The NIMO Monte Carlo model for box-air-mass factor and radiance calculations

A new fully spherical multiple scattering Monte Carlo radiative transfer model named NIMO (NIWA Monte Carlo model) is presented. The ray tracing algorithm is described in detail along with the treatment of scattering and absorption, and the simulation of backward adjoint trajectories. The primary ap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of quantitative spectroscopy & radiative transfer 2012-06, Vol.113 (9), p.721-738
Hauptverfasser: Hay, Timothy D., Bodeker, Greg E., Kreher, Karin, Schofield, Robyn, Liley, J. Ben, Scherer, Martin, McDonald, Adrian J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 738
container_issue 9
container_start_page 721
container_title Journal of quantitative spectroscopy & radiative transfer
container_volume 113
creator Hay, Timothy D.
Bodeker, Greg E.
Kreher, Karin
Schofield, Robyn
Liley, J. Ben
Scherer, Martin
McDonald, Adrian J.
description A new fully spherical multiple scattering Monte Carlo radiative transfer model named NIMO (NIWA Monte Carlo model) is presented. The ray tracing algorithm is described in detail along with the treatment of scattering and absorption, and the simulation of backward adjoint trajectories. The primary application of NIMO is the calculation of box-air-mass factors (box-AMFs), which are used to convert slant column densities (SCDs) of trace gases, derived from UV–visible multiple axis Differential Optical Absorption Spectroscopy (MAX-DOAS) measurements, into vertical column densities (VCDs). Box-AMFs are also employed as weighting functions for optimal estimation retrievals of vertical trace gas profiles from SCDs. Monte Carlo models are well suited to AMF calculations at high solar zenith angles (SZA) and at low viewing elevation angles where multiple scattering is important. Additionally, the object-oriented structure of NIMO makes it easily extensible to new applications by plugging in objects for new absorbing or scattering species. Box-AMFs and radiances, calculated for various wavelengths, SZAs, viewing elevation and azimuth angles and aerosol scenarios, are compared with results from nine other models using a set of exercises from a recent radiative transfer model intercomparison. NIMO results for these simulations are well within the range of variability of the other models. ► A new fully spherical Monte Carlo radiative transfer model is described in detail. ► The model is optimized for MAX-DOAS simulations and is easily extensible for different absorbing or scattering species. ► Box-air-mass factors and radiances are modelled for MAX-DOAS measurement geometries. ► Simulations demonstrate the sensitivity of MAX-DOAS to trace gases and aerosols near the instrument altitude. ► Model simulation results are consistent with other radiative transfer models.
doi_str_mv 10.1016/j.jqsrt.2012.02.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1011213044</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022407312000568</els_id><sourcerecordid>1011213044</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-e84321198e4d0fc61bcb5f03325a87e4eeb60c9e50ecaa64cb25d5dedde1022e3</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwBFx85JKwtuM0PXBAFT-VWnopZ8uxN8JRErd2iuDtcSlnpJFWWn2z2hlCbhnkDFh53-btPoYx58B4Dkkgz8iEVbN5xoTk52QCwHlWwExckqsYWwAQgpUTstp-IH1brjd07YcR6UKHztPeW-xo4wOt_VemXch6HSNttBnTTg-WBm2dHgxSoztz6PTo_BCvyUWju4g3f3NK3p-ftovXbLV5WS4eV5kRohwzrArBGZtXWFhoTMlqU8smPcSlrmZYINYlmDlKQKN1WZiaSystWossxUAxJXenu7vg9weMo-pdNNh1ekB_iCp1wjgTUBQJFSfUBB9jwEbtgut1-E7QkStVq367U8fuFCSBTK6HkwtTik-HQUXjMMW1LqAZlfXuX_8P9i94xQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1011213044</pqid></control><display><type>article</type><title>The NIMO Monte Carlo model for box-air-mass factor and radiance calculations</title><source>Elsevier ScienceDirect Journals</source><creator>Hay, Timothy D. ; Bodeker, Greg E. ; Kreher, Karin ; Schofield, Robyn ; Liley, J. Ben ; Scherer, Martin ; McDonald, Adrian J.</creator><creatorcontrib>Hay, Timothy D. ; Bodeker, Greg E. ; Kreher, Karin ; Schofield, Robyn ; Liley, J. Ben ; Scherer, Martin ; McDonald, Adrian J.</creatorcontrib><description>A new fully spherical multiple scattering Monte Carlo radiative transfer model named NIMO (NIWA Monte Carlo model) is presented. The ray tracing algorithm is described in detail along with the treatment of scattering and absorption, and the simulation of backward adjoint trajectories. The primary application of NIMO is the calculation of box-air-mass factors (box-AMFs), which are used to convert slant column densities (SCDs) of trace gases, derived from UV–visible multiple axis Differential Optical Absorption Spectroscopy (MAX-DOAS) measurements, into vertical column densities (VCDs). Box-AMFs are also employed as weighting functions for optimal estimation retrievals of vertical trace gas profiles from SCDs. Monte Carlo models are well suited to AMF calculations at high solar zenith angles (SZA) and at low viewing elevation angles where multiple scattering is important. Additionally, the object-oriented structure of NIMO makes it easily extensible to new applications by plugging in objects for new absorbing or scattering species. Box-AMFs and radiances, calculated for various wavelengths, SZAs, viewing elevation and azimuth angles and aerosol scenarios, are compared with results from nine other models using a set of exercises from a recent radiative transfer model intercomparison. NIMO results for these simulations are well within the range of variability of the other models. ► A new fully spherical Monte Carlo radiative transfer model is described in detail. ► The model is optimized for MAX-DOAS simulations and is easily extensible for different absorbing or scattering species. ► Box-air-mass factors and radiances are modelled for MAX-DOAS measurement geometries. ► Simulations demonstrate the sensitivity of MAX-DOAS to trace gases and aerosols near the instrument altitude. ► Model simulation results are consistent with other radiative transfer models.</description><identifier>ISSN: 0022-4073</identifier><identifier>EISSN: 1879-1352</identifier><identifier>DOI: 10.1016/j.jqsrt.2012.02.005</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Box-air-mass factor ; MAX-DOAS ; Monte Carlo ; Optimal estimation ; Radiative transfer model</subject><ispartof>Journal of quantitative spectroscopy &amp; radiative transfer, 2012-06, Vol.113 (9), p.721-738</ispartof><rights>2012 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-e84321198e4d0fc61bcb5f03325a87e4eeb60c9e50ecaa64cb25d5dedde1022e3</citedby><cites>FETCH-LOGICAL-c336t-e84321198e4d0fc61bcb5f03325a87e4eeb60c9e50ecaa64cb25d5dedde1022e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022407312000568$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Hay, Timothy D.</creatorcontrib><creatorcontrib>Bodeker, Greg E.</creatorcontrib><creatorcontrib>Kreher, Karin</creatorcontrib><creatorcontrib>Schofield, Robyn</creatorcontrib><creatorcontrib>Liley, J. Ben</creatorcontrib><creatorcontrib>Scherer, Martin</creatorcontrib><creatorcontrib>McDonald, Adrian J.</creatorcontrib><title>The NIMO Monte Carlo model for box-air-mass factor and radiance calculations</title><title>Journal of quantitative spectroscopy &amp; radiative transfer</title><description>A new fully spherical multiple scattering Monte Carlo radiative transfer model named NIMO (NIWA Monte Carlo model) is presented. The ray tracing algorithm is described in detail along with the treatment of scattering and absorption, and the simulation of backward adjoint trajectories. The primary application of NIMO is the calculation of box-air-mass factors (box-AMFs), which are used to convert slant column densities (SCDs) of trace gases, derived from UV–visible multiple axis Differential Optical Absorption Spectroscopy (MAX-DOAS) measurements, into vertical column densities (VCDs). Box-AMFs are also employed as weighting functions for optimal estimation retrievals of vertical trace gas profiles from SCDs. Monte Carlo models are well suited to AMF calculations at high solar zenith angles (SZA) and at low viewing elevation angles where multiple scattering is important. Additionally, the object-oriented structure of NIMO makes it easily extensible to new applications by plugging in objects for new absorbing or scattering species. Box-AMFs and radiances, calculated for various wavelengths, SZAs, viewing elevation and azimuth angles and aerosol scenarios, are compared with results from nine other models using a set of exercises from a recent radiative transfer model intercomparison. NIMO results for these simulations are well within the range of variability of the other models. ► A new fully spherical Monte Carlo radiative transfer model is described in detail. ► The model is optimized for MAX-DOAS simulations and is easily extensible for different absorbing or scattering species. ► Box-air-mass factors and radiances are modelled for MAX-DOAS measurement geometries. ► Simulations demonstrate the sensitivity of MAX-DOAS to trace gases and aerosols near the instrument altitude. ► Model simulation results are consistent with other radiative transfer models.</description><subject>Box-air-mass factor</subject><subject>MAX-DOAS</subject><subject>Monte Carlo</subject><subject>Optimal estimation</subject><subject>Radiative transfer model</subject><issn>0022-4073</issn><issn>1879-1352</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqXwBFx85JKwtuM0PXBAFT-VWnopZ8uxN8JRErd2iuDtcSlnpJFWWn2z2hlCbhnkDFh53-btPoYx58B4Dkkgz8iEVbN5xoTk52QCwHlWwExckqsYWwAQgpUTstp-IH1brjd07YcR6UKHztPeW-xo4wOt_VemXch6HSNttBnTTg-WBm2dHgxSoztz6PTo_BCvyUWju4g3f3NK3p-ftovXbLV5WS4eV5kRohwzrArBGZtXWFhoTMlqU8smPcSlrmZYINYlmDlKQKN1WZiaSystWossxUAxJXenu7vg9weMo-pdNNh1ekB_iCp1wjgTUBQJFSfUBB9jwEbtgut1-E7QkStVq367U8fuFCSBTK6HkwtTik-HQUXjMMW1LqAZlfXuX_8P9i94xQ</recordid><startdate>201206</startdate><enddate>201206</enddate><creator>Hay, Timothy D.</creator><creator>Bodeker, Greg E.</creator><creator>Kreher, Karin</creator><creator>Schofield, Robyn</creator><creator>Liley, J. Ben</creator><creator>Scherer, Martin</creator><creator>McDonald, Adrian J.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>201206</creationdate><title>The NIMO Monte Carlo model for box-air-mass factor and radiance calculations</title><author>Hay, Timothy D. ; Bodeker, Greg E. ; Kreher, Karin ; Schofield, Robyn ; Liley, J. Ben ; Scherer, Martin ; McDonald, Adrian J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-e84321198e4d0fc61bcb5f03325a87e4eeb60c9e50ecaa64cb25d5dedde1022e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Box-air-mass factor</topic><topic>MAX-DOAS</topic><topic>Monte Carlo</topic><topic>Optimal estimation</topic><topic>Radiative transfer model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hay, Timothy D.</creatorcontrib><creatorcontrib>Bodeker, Greg E.</creatorcontrib><creatorcontrib>Kreher, Karin</creatorcontrib><creatorcontrib>Schofield, Robyn</creatorcontrib><creatorcontrib>Liley, J. Ben</creatorcontrib><creatorcontrib>Scherer, Martin</creatorcontrib><creatorcontrib>McDonald, Adrian J.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Journal of quantitative spectroscopy &amp; radiative transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hay, Timothy D.</au><au>Bodeker, Greg E.</au><au>Kreher, Karin</au><au>Schofield, Robyn</au><au>Liley, J. Ben</au><au>Scherer, Martin</au><au>McDonald, Adrian J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The NIMO Monte Carlo model for box-air-mass factor and radiance calculations</atitle><jtitle>Journal of quantitative spectroscopy &amp; radiative transfer</jtitle><date>2012-06</date><risdate>2012</risdate><volume>113</volume><issue>9</issue><spage>721</spage><epage>738</epage><pages>721-738</pages><issn>0022-4073</issn><eissn>1879-1352</eissn><abstract>A new fully spherical multiple scattering Monte Carlo radiative transfer model named NIMO (NIWA Monte Carlo model) is presented. The ray tracing algorithm is described in detail along with the treatment of scattering and absorption, and the simulation of backward adjoint trajectories. The primary application of NIMO is the calculation of box-air-mass factors (box-AMFs), which are used to convert slant column densities (SCDs) of trace gases, derived from UV–visible multiple axis Differential Optical Absorption Spectroscopy (MAX-DOAS) measurements, into vertical column densities (VCDs). Box-AMFs are also employed as weighting functions for optimal estimation retrievals of vertical trace gas profiles from SCDs. Monte Carlo models are well suited to AMF calculations at high solar zenith angles (SZA) and at low viewing elevation angles where multiple scattering is important. Additionally, the object-oriented structure of NIMO makes it easily extensible to new applications by plugging in objects for new absorbing or scattering species. Box-AMFs and radiances, calculated for various wavelengths, SZAs, viewing elevation and azimuth angles and aerosol scenarios, are compared with results from nine other models using a set of exercises from a recent radiative transfer model intercomparison. NIMO results for these simulations are well within the range of variability of the other models. ► A new fully spherical Monte Carlo radiative transfer model is described in detail. ► The model is optimized for MAX-DOAS simulations and is easily extensible for different absorbing or scattering species. ► Box-air-mass factors and radiances are modelled for MAX-DOAS measurement geometries. ► Simulations demonstrate the sensitivity of MAX-DOAS to trace gases and aerosols near the instrument altitude. ► Model simulation results are consistent with other radiative transfer models.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.jqsrt.2012.02.005</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-4073
ispartof Journal of quantitative spectroscopy & radiative transfer, 2012-06, Vol.113 (9), p.721-738
issn 0022-4073
1879-1352
language eng
recordid cdi_proquest_miscellaneous_1011213044
source Elsevier ScienceDirect Journals
subjects Box-air-mass factor
MAX-DOAS
Monte Carlo
Optimal estimation
Radiative transfer model
title The NIMO Monte Carlo model for box-air-mass factor and radiance calculations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T16%3A21%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20NIMO%20Monte%20Carlo%20model%20for%20box-air-mass%20factor%20and%20radiance%20calculations&rft.jtitle=Journal%20of%20quantitative%20spectroscopy%20&%20radiative%20transfer&rft.au=Hay,%20Timothy%20D.&rft.date=2012-06&rft.volume=113&rft.issue=9&rft.spage=721&rft.epage=738&rft.pages=721-738&rft.issn=0022-4073&rft.eissn=1879-1352&rft_id=info:doi/10.1016/j.jqsrt.2012.02.005&rft_dat=%3Cproquest_cross%3E1011213044%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1011213044&rft_id=info:pmid/&rft_els_id=S0022407312000568&rfr_iscdi=true