Effect of defects on fracture strength of graphene sheets

► Two types of Stone–Wales defect initiation in graphene sheets are simulated. ► S–W 1 defect is more kinetically favourable than S–W 2 defect. ► Both S–W defect and vacancy defect cause structural strength loss of graphene sheet. ► Quantized fracture mechanics can predict the fracture strength of g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational materials science 2012-03, Vol.54, p.236-239
Hauptverfasser: Wang, M.C., Yan, C., Ma, L., Hu, N., Chen, M.W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 239
container_issue
container_start_page 236
container_title Computational materials science
container_volume 54
creator Wang, M.C.
Yan, C.
Ma, L.
Hu, N.
Chen, M.W.
description ► Two types of Stone–Wales defect initiation in graphene sheets are simulated. ► S–W 1 defect is more kinetically favourable than S–W 2 defect. ► Both S–W defect and vacancy defect cause structural strength loss of graphene sheet. ► Quantized fracture mechanics can predict the fracture strength of graphene with n-vacancy defect. With a hexagonal monolayer network of carbon atoms, graphene has demonstrated exceptional electrical and mechanical properties. In this work, the fracture of graphene sheets with Stone–Wales type defects and vacancies were investigated using molecular dynamics simulations at different temperatures. The initiation of defects via bond rotation was also investigated. The results indicate that the defects and vacancies can cause significant strength loss in graphene. The fracture strength of graphene is also affected by temperature and loading directions. The simulation results were compared with the prediction from the quantized fracture mechanics.
doi_str_mv 10.1016/j.commatsci.2011.10.032
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1010906905</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927025611006033</els_id><sourcerecordid>1010906905</sourcerecordid><originalsourceid>FETCH-LOGICAL-c493t-ad79cb65d85c85c48da8d27e0a20f5409825a4cfe593a7cd95209e6b651640233</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKu_wb0IXnadZDfZzbGU-gEFL3oOMZm0W_ajJqngvzdLS6_CQIaZ553JvITcUygoUPG0K8zY9zoG0xYMKE3VAkp2QWa0qWUODdBLMgPJ6hwYF9fkJoQdJKVs2IzIlXNoYja6zOKUhWwcMue1iQePWYgeh03cTv2N1_stDqm4RYzhllw53QW8O71z8vm8-li-5uv3l7flYp2bSpYx17aW5ktw23CTomqsbiyrETQDxytIv-C6Mg65LHVtrOQMJIqkoKICVpZz8nicu_fj9wFDVH0bDHadHnA8BJVMAAlCAk9ofUSNH0Pw6NTet732vwmaOKF26myWmsyaGsmspHw4LdHB6C7dP5g2nOWMS1pCKRK3OHKYLv5p0as0CQeDtvXJPGXH9t9df_nwgwE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1010906905</pqid></control><display><type>article</type><title>Effect of defects on fracture strength of graphene sheets</title><source>Elsevier ScienceDirect Journals</source><creator>Wang, M.C. ; Yan, C. ; Ma, L. ; Hu, N. ; Chen, M.W.</creator><creatorcontrib>Wang, M.C. ; Yan, C. ; Ma, L. ; Hu, N. ; Chen, M.W.</creatorcontrib><description>► Two types of Stone–Wales defect initiation in graphene sheets are simulated. ► S–W 1 defect is more kinetically favourable than S–W 2 defect. ► Both S–W defect and vacancy defect cause structural strength loss of graphene sheet. ► Quantized fracture mechanics can predict the fracture strength of graphene with n-vacancy defect. With a hexagonal monolayer network of carbon atoms, graphene has demonstrated exceptional electrical and mechanical properties. In this work, the fracture of graphene sheets with Stone–Wales type defects and vacancies were investigated using molecular dynamics simulations at different temperatures. The initiation of defects via bond rotation was also investigated. The results indicate that the defects and vacancies can cause significant strength loss in graphene. The fracture strength of graphene is also affected by temperature and loading directions. The simulation results were compared with the prediction from the quantized fracture mechanics.</description><identifier>ISSN: 0927-0256</identifier><identifier>EISSN: 1879-0801</identifier><identifier>DOI: 10.1016/j.commatsci.2011.10.032</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Bonding ; Carbon ; Computer simulation ; Condensed matter: structure, mechanical and thermal properties ; Defect ; Defects ; Exact sciences and technology ; Fracture mechanics ; Fracture strength ; Graphene ; Mechanical and acoustical properties of condensed matter ; Mechanical properties of nanoscale materials ; Molecular dynamics simulation ; Physics ; Vacancies</subject><ispartof>Computational materials science, 2012-03, Vol.54, p.236-239</ispartof><rights>2011 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c493t-ad79cb65d85c85c48da8d27e0a20f5409825a4cfe593a7cd95209e6b651640233</citedby><cites>FETCH-LOGICAL-c493t-ad79cb65d85c85c48da8d27e0a20f5409825a4cfe593a7cd95209e6b651640233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0927025611006033$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25913036$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, M.C.</creatorcontrib><creatorcontrib>Yan, C.</creatorcontrib><creatorcontrib>Ma, L.</creatorcontrib><creatorcontrib>Hu, N.</creatorcontrib><creatorcontrib>Chen, M.W.</creatorcontrib><title>Effect of defects on fracture strength of graphene sheets</title><title>Computational materials science</title><description>► Two types of Stone–Wales defect initiation in graphene sheets are simulated. ► S–W 1 defect is more kinetically favourable than S–W 2 defect. ► Both S–W defect and vacancy defect cause structural strength loss of graphene sheet. ► Quantized fracture mechanics can predict the fracture strength of graphene with n-vacancy defect. With a hexagonal monolayer network of carbon atoms, graphene has demonstrated exceptional electrical and mechanical properties. In this work, the fracture of graphene sheets with Stone–Wales type defects and vacancies were investigated using molecular dynamics simulations at different temperatures. The initiation of defects via bond rotation was also investigated. The results indicate that the defects and vacancies can cause significant strength loss in graphene. The fracture strength of graphene is also affected by temperature and loading directions. The simulation results were compared with the prediction from the quantized fracture mechanics.</description><subject>Bonding</subject><subject>Carbon</subject><subject>Computer simulation</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Defect</subject><subject>Defects</subject><subject>Exact sciences and technology</subject><subject>Fracture mechanics</subject><subject>Fracture strength</subject><subject>Graphene</subject><subject>Mechanical and acoustical properties of condensed matter</subject><subject>Mechanical properties of nanoscale materials</subject><subject>Molecular dynamics simulation</subject><subject>Physics</subject><subject>Vacancies</subject><issn>0927-0256</issn><issn>1879-0801</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKu_wb0IXnadZDfZzbGU-gEFL3oOMZm0W_ajJqngvzdLS6_CQIaZ553JvITcUygoUPG0K8zY9zoG0xYMKE3VAkp2QWa0qWUODdBLMgPJ6hwYF9fkJoQdJKVs2IzIlXNoYja6zOKUhWwcMue1iQePWYgeh03cTv2N1_stDqm4RYzhllw53QW8O71z8vm8-li-5uv3l7flYp2bSpYx17aW5ktw23CTomqsbiyrETQDxytIv-C6Mg65LHVtrOQMJIqkoKICVpZz8nicu_fj9wFDVH0bDHadHnA8BJVMAAlCAk9ofUSNH0Pw6NTet732vwmaOKF26myWmsyaGsmspHw4LdHB6C7dP5g2nOWMS1pCKRK3OHKYLv5p0as0CQeDtvXJPGXH9t9df_nwgwE</recordid><startdate>20120301</startdate><enddate>20120301</enddate><creator>Wang, M.C.</creator><creator>Yan, C.</creator><creator>Ma, L.</creator><creator>Hu, N.</creator><creator>Chen, M.W.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20120301</creationdate><title>Effect of defects on fracture strength of graphene sheets</title><author>Wang, M.C. ; Yan, C. ; Ma, L. ; Hu, N. ; Chen, M.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c493t-ad79cb65d85c85c48da8d27e0a20f5409825a4cfe593a7cd95209e6b651640233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Bonding</topic><topic>Carbon</topic><topic>Computer simulation</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Defect</topic><topic>Defects</topic><topic>Exact sciences and technology</topic><topic>Fracture mechanics</topic><topic>Fracture strength</topic><topic>Graphene</topic><topic>Mechanical and acoustical properties of condensed matter</topic><topic>Mechanical properties of nanoscale materials</topic><topic>Molecular dynamics simulation</topic><topic>Physics</topic><topic>Vacancies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, M.C.</creatorcontrib><creatorcontrib>Yan, C.</creatorcontrib><creatorcontrib>Ma, L.</creatorcontrib><creatorcontrib>Hu, N.</creatorcontrib><creatorcontrib>Chen, M.W.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, M.C.</au><au>Yan, C.</au><au>Ma, L.</au><au>Hu, N.</au><au>Chen, M.W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of defects on fracture strength of graphene sheets</atitle><jtitle>Computational materials science</jtitle><date>2012-03-01</date><risdate>2012</risdate><volume>54</volume><spage>236</spage><epage>239</epage><pages>236-239</pages><issn>0927-0256</issn><eissn>1879-0801</eissn><abstract>► Two types of Stone–Wales defect initiation in graphene sheets are simulated. ► S–W 1 defect is more kinetically favourable than S–W 2 defect. ► Both S–W defect and vacancy defect cause structural strength loss of graphene sheet. ► Quantized fracture mechanics can predict the fracture strength of graphene with n-vacancy defect. With a hexagonal monolayer network of carbon atoms, graphene has demonstrated exceptional electrical and mechanical properties. In this work, the fracture of graphene sheets with Stone–Wales type defects and vacancies were investigated using molecular dynamics simulations at different temperatures. The initiation of defects via bond rotation was also investigated. The results indicate that the defects and vacancies can cause significant strength loss in graphene. The fracture strength of graphene is also affected by temperature and loading directions. The simulation results were compared with the prediction from the quantized fracture mechanics.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.commatsci.2011.10.032</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0927-0256
ispartof Computational materials science, 2012-03, Vol.54, p.236-239
issn 0927-0256
1879-0801
language eng
recordid cdi_proquest_miscellaneous_1010906905
source Elsevier ScienceDirect Journals
subjects Bonding
Carbon
Computer simulation
Condensed matter: structure, mechanical and thermal properties
Defect
Defects
Exact sciences and technology
Fracture mechanics
Fracture strength
Graphene
Mechanical and acoustical properties of condensed matter
Mechanical properties of nanoscale materials
Molecular dynamics simulation
Physics
Vacancies
title Effect of defects on fracture strength of graphene sheets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T02%3A06%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20defects%20on%20fracture%20strength%20of%20graphene%20sheets&rft.jtitle=Computational%20materials%20science&rft.au=Wang,%20M.C.&rft.date=2012-03-01&rft.volume=54&rft.spage=236&rft.epage=239&rft.pages=236-239&rft.issn=0927-0256&rft.eissn=1879-0801&rft_id=info:doi/10.1016/j.commatsci.2011.10.032&rft_dat=%3Cproquest_cross%3E1010906905%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1010906905&rft_id=info:pmid/&rft_els_id=S0927025611006033&rfr_iscdi=true