Effect of defects on fracture strength of graphene sheets
► Two types of Stone–Wales defect initiation in graphene sheets are simulated. ► S–W 1 defect is more kinetically favourable than S–W 2 defect. ► Both S–W defect and vacancy defect cause structural strength loss of graphene sheet. ► Quantized fracture mechanics can predict the fracture strength of g...
Gespeichert in:
Veröffentlicht in: | Computational materials science 2012-03, Vol.54, p.236-239 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 239 |
---|---|
container_issue | |
container_start_page | 236 |
container_title | Computational materials science |
container_volume | 54 |
creator | Wang, M.C. Yan, C. Ma, L. Hu, N. Chen, M.W. |
description | ► Two types of Stone–Wales defect initiation in graphene sheets are simulated. ► S–W
1 defect is more kinetically favourable than S–W
2 defect. ► Both S–W defect and vacancy defect cause structural strength loss of graphene sheet. ► Quantized fracture mechanics can predict the fracture strength of graphene with
n-vacancy defect.
With a hexagonal monolayer network of carbon atoms, graphene has demonstrated exceptional electrical and mechanical properties. In this work, the fracture of graphene sheets with Stone–Wales type defects and vacancies were investigated using molecular dynamics simulations at different temperatures. The initiation of defects via bond rotation was also investigated. The results indicate that the defects and vacancies can cause significant strength loss in graphene. The fracture strength of graphene is also affected by temperature and loading directions. The simulation results were compared with the prediction from the quantized fracture mechanics. |
doi_str_mv | 10.1016/j.commatsci.2011.10.032 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1010906905</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927025611006033</els_id><sourcerecordid>1010906905</sourcerecordid><originalsourceid>FETCH-LOGICAL-c493t-ad79cb65d85c85c48da8d27e0a20f5409825a4cfe593a7cd95209e6b651640233</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKu_wb0IXnadZDfZzbGU-gEFL3oOMZm0W_ajJqngvzdLS6_CQIaZ553JvITcUygoUPG0K8zY9zoG0xYMKE3VAkp2QWa0qWUODdBLMgPJ6hwYF9fkJoQdJKVs2IzIlXNoYja6zOKUhWwcMue1iQePWYgeh03cTv2N1_stDqm4RYzhllw53QW8O71z8vm8-li-5uv3l7flYp2bSpYx17aW5ktw23CTomqsbiyrETQDxytIv-C6Mg65LHVtrOQMJIqkoKICVpZz8nicu_fj9wFDVH0bDHadHnA8BJVMAAlCAk9ofUSNH0Pw6NTet732vwmaOKF26myWmsyaGsmspHw4LdHB6C7dP5g2nOWMS1pCKRK3OHKYLv5p0as0CQeDtvXJPGXH9t9df_nwgwE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1010906905</pqid></control><display><type>article</type><title>Effect of defects on fracture strength of graphene sheets</title><source>Elsevier ScienceDirect Journals</source><creator>Wang, M.C. ; Yan, C. ; Ma, L. ; Hu, N. ; Chen, M.W.</creator><creatorcontrib>Wang, M.C. ; Yan, C. ; Ma, L. ; Hu, N. ; Chen, M.W.</creatorcontrib><description>► Two types of Stone–Wales defect initiation in graphene sheets are simulated. ► S–W
1 defect is more kinetically favourable than S–W
2 defect. ► Both S–W defect and vacancy defect cause structural strength loss of graphene sheet. ► Quantized fracture mechanics can predict the fracture strength of graphene with
n-vacancy defect.
With a hexagonal monolayer network of carbon atoms, graphene has demonstrated exceptional electrical and mechanical properties. In this work, the fracture of graphene sheets with Stone–Wales type defects and vacancies were investigated using molecular dynamics simulations at different temperatures. The initiation of defects via bond rotation was also investigated. The results indicate that the defects and vacancies can cause significant strength loss in graphene. The fracture strength of graphene is also affected by temperature and loading directions. The simulation results were compared with the prediction from the quantized fracture mechanics.</description><identifier>ISSN: 0927-0256</identifier><identifier>EISSN: 1879-0801</identifier><identifier>DOI: 10.1016/j.commatsci.2011.10.032</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Bonding ; Carbon ; Computer simulation ; Condensed matter: structure, mechanical and thermal properties ; Defect ; Defects ; Exact sciences and technology ; Fracture mechanics ; Fracture strength ; Graphene ; Mechanical and acoustical properties of condensed matter ; Mechanical properties of nanoscale materials ; Molecular dynamics simulation ; Physics ; Vacancies</subject><ispartof>Computational materials science, 2012-03, Vol.54, p.236-239</ispartof><rights>2011 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c493t-ad79cb65d85c85c48da8d27e0a20f5409825a4cfe593a7cd95209e6b651640233</citedby><cites>FETCH-LOGICAL-c493t-ad79cb65d85c85c48da8d27e0a20f5409825a4cfe593a7cd95209e6b651640233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0927025611006033$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25913036$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, M.C.</creatorcontrib><creatorcontrib>Yan, C.</creatorcontrib><creatorcontrib>Ma, L.</creatorcontrib><creatorcontrib>Hu, N.</creatorcontrib><creatorcontrib>Chen, M.W.</creatorcontrib><title>Effect of defects on fracture strength of graphene sheets</title><title>Computational materials science</title><description>► Two types of Stone–Wales defect initiation in graphene sheets are simulated. ► S–W
1 defect is more kinetically favourable than S–W
2 defect. ► Both S–W defect and vacancy defect cause structural strength loss of graphene sheet. ► Quantized fracture mechanics can predict the fracture strength of graphene with
n-vacancy defect.
With a hexagonal monolayer network of carbon atoms, graphene has demonstrated exceptional electrical and mechanical properties. In this work, the fracture of graphene sheets with Stone–Wales type defects and vacancies were investigated using molecular dynamics simulations at different temperatures. The initiation of defects via bond rotation was also investigated. The results indicate that the defects and vacancies can cause significant strength loss in graphene. The fracture strength of graphene is also affected by temperature and loading directions. The simulation results were compared with the prediction from the quantized fracture mechanics.</description><subject>Bonding</subject><subject>Carbon</subject><subject>Computer simulation</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Defect</subject><subject>Defects</subject><subject>Exact sciences and technology</subject><subject>Fracture mechanics</subject><subject>Fracture strength</subject><subject>Graphene</subject><subject>Mechanical and acoustical properties of condensed matter</subject><subject>Mechanical properties of nanoscale materials</subject><subject>Molecular dynamics simulation</subject><subject>Physics</subject><subject>Vacancies</subject><issn>0927-0256</issn><issn>1879-0801</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKu_wb0IXnadZDfZzbGU-gEFL3oOMZm0W_ajJqngvzdLS6_CQIaZ553JvITcUygoUPG0K8zY9zoG0xYMKE3VAkp2QWa0qWUODdBLMgPJ6hwYF9fkJoQdJKVs2IzIlXNoYja6zOKUhWwcMue1iQePWYgeh03cTv2N1_stDqm4RYzhllw53QW8O71z8vm8-li-5uv3l7flYp2bSpYx17aW5ktw23CTomqsbiyrETQDxytIv-C6Mg65LHVtrOQMJIqkoKICVpZz8nicu_fj9wFDVH0bDHadHnA8BJVMAAlCAk9ofUSNH0Pw6NTet732vwmaOKF26myWmsyaGsmspHw4LdHB6C7dP5g2nOWMS1pCKRK3OHKYLv5p0as0CQeDtvXJPGXH9t9df_nwgwE</recordid><startdate>20120301</startdate><enddate>20120301</enddate><creator>Wang, M.C.</creator><creator>Yan, C.</creator><creator>Ma, L.</creator><creator>Hu, N.</creator><creator>Chen, M.W.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20120301</creationdate><title>Effect of defects on fracture strength of graphene sheets</title><author>Wang, M.C. ; Yan, C. ; Ma, L. ; Hu, N. ; Chen, M.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c493t-ad79cb65d85c85c48da8d27e0a20f5409825a4cfe593a7cd95209e6b651640233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Bonding</topic><topic>Carbon</topic><topic>Computer simulation</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Defect</topic><topic>Defects</topic><topic>Exact sciences and technology</topic><topic>Fracture mechanics</topic><topic>Fracture strength</topic><topic>Graphene</topic><topic>Mechanical and acoustical properties of condensed matter</topic><topic>Mechanical properties of nanoscale materials</topic><topic>Molecular dynamics simulation</topic><topic>Physics</topic><topic>Vacancies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, M.C.</creatorcontrib><creatorcontrib>Yan, C.</creatorcontrib><creatorcontrib>Ma, L.</creatorcontrib><creatorcontrib>Hu, N.</creatorcontrib><creatorcontrib>Chen, M.W.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, M.C.</au><au>Yan, C.</au><au>Ma, L.</au><au>Hu, N.</au><au>Chen, M.W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of defects on fracture strength of graphene sheets</atitle><jtitle>Computational materials science</jtitle><date>2012-03-01</date><risdate>2012</risdate><volume>54</volume><spage>236</spage><epage>239</epage><pages>236-239</pages><issn>0927-0256</issn><eissn>1879-0801</eissn><abstract>► Two types of Stone–Wales defect initiation in graphene sheets are simulated. ► S–W
1 defect is more kinetically favourable than S–W
2 defect. ► Both S–W defect and vacancy defect cause structural strength loss of graphene sheet. ► Quantized fracture mechanics can predict the fracture strength of graphene with
n-vacancy defect.
With a hexagonal monolayer network of carbon atoms, graphene has demonstrated exceptional electrical and mechanical properties. In this work, the fracture of graphene sheets with Stone–Wales type defects and vacancies were investigated using molecular dynamics simulations at different temperatures. The initiation of defects via bond rotation was also investigated. The results indicate that the defects and vacancies can cause significant strength loss in graphene. The fracture strength of graphene is also affected by temperature and loading directions. The simulation results were compared with the prediction from the quantized fracture mechanics.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.commatsci.2011.10.032</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0927-0256 |
ispartof | Computational materials science, 2012-03, Vol.54, p.236-239 |
issn | 0927-0256 1879-0801 |
language | eng |
recordid | cdi_proquest_miscellaneous_1010906905 |
source | Elsevier ScienceDirect Journals |
subjects | Bonding Carbon Computer simulation Condensed matter: structure, mechanical and thermal properties Defect Defects Exact sciences and technology Fracture mechanics Fracture strength Graphene Mechanical and acoustical properties of condensed matter Mechanical properties of nanoscale materials Molecular dynamics simulation Physics Vacancies |
title | Effect of defects on fracture strength of graphene sheets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T02%3A06%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20defects%20on%20fracture%20strength%20of%20graphene%20sheets&rft.jtitle=Computational%20materials%20science&rft.au=Wang,%20M.C.&rft.date=2012-03-01&rft.volume=54&rft.spage=236&rft.epage=239&rft.pages=236-239&rft.issn=0927-0256&rft.eissn=1879-0801&rft_id=info:doi/10.1016/j.commatsci.2011.10.032&rft_dat=%3Cproquest_cross%3E1010906905%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1010906905&rft_id=info:pmid/&rft_els_id=S0927025611006033&rfr_iscdi=true |