Crystal growth of different morphologies (nanospheres, nanoribbons and nanoplates) of silver nanoparticles

Different silver nanomaterial (nanoribbons, nanospheres and tunicate nanoplates) have been prepared by silver-mirror reaction. [Display omitted] ► Formation of silver nanoplates, nanoribbons and nanospheres is reported in cetyltrimethlyammonium bromide. ► Ammonia concentrations and reaction time det...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Colloids and surfaces. A, Physicochemical and engineering aspects Physicochemical and engineering aspects, 2012-01, Vol.393 (5), p.1-5
Hauptverfasser: Zaheer, Zoya, Rafiuddin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue 5
container_start_page 1
container_title Colloids and surfaces. A, Physicochemical and engineering aspects
container_volume 393
creator Zaheer, Zoya
Rafiuddin
description Different silver nanomaterial (nanoribbons, nanospheres and tunicate nanoplates) have been prepared by silver-mirror reaction. [Display omitted] ► Formation of silver nanoplates, nanoribbons and nanospheres is reported in cetyltrimethlyammonium bromide. ► Ammonia concentrations and reaction time determined the morphology of silver nanoparticles. ► Peak and shoulder in the UV–vis spectra is due to the different optical properties of silver nanocrystals. Silver nanoribbons and nanoplates have been synthesized by the classical silver-mirror reaction by changing the reaction conditions at room temperature. It was found that the reaction time and [ammonia] were an important factor for the growth of nanoparticles having different morphologies. Silver nanoplates and nanoribbons can be achieved in high yield by adjusting the reaction time and ammonia content, respectively. The formation rate of silver nanoparticles was investigated by UV–visible spectroscopy. Transmission electron microscopy (TEM) and selected areas electron diffraction (SAED) have been employed to characterize the resulting nanoplates and nanoribbons. Ostwald ripening process was observed which caused fusion among growing small spheres silver nanoparticles leads to the formation of nanoribbons at lower [ammonia].
doi_str_mv 10.1016/j.colsurfa.2011.08.018
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1010900992</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927775711005097</els_id><sourcerecordid>1010900992</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-26567886000833eea8a4da0eb17698d5523eff05b0e4570f391aa3edbbcf7cba3</originalsourceid><addsrcrecordid>eNqFkE1v1DAQhi0EEkvpX4Aci0TScZzE8Q20ghapUg-0Z8txxrteeePgybbqv8dL4Mxp9M488_Uy9oFDxYF314fKxkCn5ExVA-cV9BXw_hXb8F6KshGtes02oGpZStnKt-wd0QEAmlaqDTts0wstJhS7FJ-XfRFdMXrnMOG0FMeY5n0MceeRiqvJTJHmfS7R5-Iskh-GOFFhpvGPnoNZkD6dZ5APT5jWrEmLtwHpPXvjTCC8_Bsv2OP3bw_b2_Lu_ubH9utdaUWnlrLu2k72fZdP7IVANL1pRgM4cNmpfmzbWqBz0A6A-QVwQnFjBI7DYJ20gxEX7GqdO6f464S06KMniyGYCeOJdDYNFIBSdUa7FbUpEiV0ek7-aNJLhs5cpw_6n7n6bK6GXmdzc-PHtdGZqM0uedKPPzPQAnDZNIpn4stKYH71yWPSZD1OFkef0C56jP5_S34DVQ-ScQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1010900992</pqid></control><display><type>article</type><title>Crystal growth of different morphologies (nanospheres, nanoribbons and nanoplates) of silver nanoparticles</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Zaheer, Zoya ; Rafiuddin</creator><creatorcontrib>Zaheer, Zoya ; Rafiuddin</creatorcontrib><description>Different silver nanomaterial (nanoribbons, nanospheres and tunicate nanoplates) have been prepared by silver-mirror reaction. [Display omitted] ► Formation of silver nanoplates, nanoribbons and nanospheres is reported in cetyltrimethlyammonium bromide. ► Ammonia concentrations and reaction time determined the morphology of silver nanoparticles. ► Peak and shoulder in the UV–vis spectra is due to the different optical properties of silver nanocrystals. Silver nanoribbons and nanoplates have been synthesized by the classical silver-mirror reaction by changing the reaction conditions at room temperature. It was found that the reaction time and [ammonia] were an important factor for the growth of nanoparticles having different morphologies. Silver nanoplates and nanoribbons can be achieved in high yield by adjusting the reaction time and ammonia content, respectively. The formation rate of silver nanoparticles was investigated by UV–visible spectroscopy. Transmission electron microscopy (TEM) and selected areas electron diffraction (SAED) have been employed to characterize the resulting nanoplates and nanoribbons. Ostwald ripening process was observed which caused fusion among growing small spheres silver nanoparticles leads to the formation of nanoribbons at lower [ammonia].</description><identifier>ISSN: 0927-7757</identifier><identifier>EISSN: 1873-4359</identifier><identifier>DOI: 10.1016/j.colsurfa.2011.08.018</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Ammonia ; colloids ; CTAB ; Glucose ; Morphology ; Nanocomposites ; Nanomaterials ; Nanoparticles ; Nanoplates ; nanosilver ; nanospheres ; Nanostructure ; Ostwald ripening ; Reaction time ; Silver ; Silver nanoribbons ; temperature ; transmission electron microscopy ; ultraviolet-visible spectroscopy</subject><ispartof>Colloids and surfaces. A, Physicochemical and engineering aspects, 2012-01, Vol.393 (5), p.1-5</ispartof><rights>2011 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-26567886000833eea8a4da0eb17698d5523eff05b0e4570f391aa3edbbcf7cba3</citedby><cites>FETCH-LOGICAL-c369t-26567886000833eea8a4da0eb17698d5523eff05b0e4570f391aa3edbbcf7cba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.colsurfa.2011.08.018$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Zaheer, Zoya</creatorcontrib><creatorcontrib>Rafiuddin</creatorcontrib><title>Crystal growth of different morphologies (nanospheres, nanoribbons and nanoplates) of silver nanoparticles</title><title>Colloids and surfaces. A, Physicochemical and engineering aspects</title><description>Different silver nanomaterial (nanoribbons, nanospheres and tunicate nanoplates) have been prepared by silver-mirror reaction. [Display omitted] ► Formation of silver nanoplates, nanoribbons and nanospheres is reported in cetyltrimethlyammonium bromide. ► Ammonia concentrations and reaction time determined the morphology of silver nanoparticles. ► Peak and shoulder in the UV–vis spectra is due to the different optical properties of silver nanocrystals. Silver nanoribbons and nanoplates have been synthesized by the classical silver-mirror reaction by changing the reaction conditions at room temperature. It was found that the reaction time and [ammonia] were an important factor for the growth of nanoparticles having different morphologies. Silver nanoplates and nanoribbons can be achieved in high yield by adjusting the reaction time and ammonia content, respectively. The formation rate of silver nanoparticles was investigated by UV–visible spectroscopy. Transmission electron microscopy (TEM) and selected areas electron diffraction (SAED) have been employed to characterize the resulting nanoplates and nanoribbons. Ostwald ripening process was observed which caused fusion among growing small spheres silver nanoparticles leads to the formation of nanoribbons at lower [ammonia].</description><subject>Ammonia</subject><subject>colloids</subject><subject>CTAB</subject><subject>Glucose</subject><subject>Morphology</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nanoplates</subject><subject>nanosilver</subject><subject>nanospheres</subject><subject>Nanostructure</subject><subject>Ostwald ripening</subject><subject>Reaction time</subject><subject>Silver</subject><subject>Silver nanoribbons</subject><subject>temperature</subject><subject>transmission electron microscopy</subject><subject>ultraviolet-visible spectroscopy</subject><issn>0927-7757</issn><issn>1873-4359</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkE1v1DAQhi0EEkvpX4Aci0TScZzE8Q20ghapUg-0Z8txxrteeePgybbqv8dL4Mxp9M488_Uy9oFDxYF314fKxkCn5ExVA-cV9BXw_hXb8F6KshGtes02oGpZStnKt-wd0QEAmlaqDTts0wstJhS7FJ-XfRFdMXrnMOG0FMeY5n0MceeRiqvJTJHmfS7R5-Iskh-GOFFhpvGPnoNZkD6dZ5APT5jWrEmLtwHpPXvjTCC8_Bsv2OP3bw_b2_Lu_ubH9utdaUWnlrLu2k72fZdP7IVANL1pRgM4cNmpfmzbWqBz0A6A-QVwQnFjBI7DYJ20gxEX7GqdO6f464S06KMniyGYCeOJdDYNFIBSdUa7FbUpEiV0ek7-aNJLhs5cpw_6n7n6bK6GXmdzc-PHtdGZqM0uedKPPzPQAnDZNIpn4stKYH71yWPSZD1OFkef0C56jP5_S34DVQ-ScQ</recordid><startdate>20120105</startdate><enddate>20120105</enddate><creator>Zaheer, Zoya</creator><creator>Rafiuddin</creator><general>Elsevier B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20120105</creationdate><title>Crystal growth of different morphologies (nanospheres, nanoribbons and nanoplates) of silver nanoparticles</title><author>Zaheer, Zoya ; Rafiuddin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-26567886000833eea8a4da0eb17698d5523eff05b0e4570f391aa3edbbcf7cba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Ammonia</topic><topic>colloids</topic><topic>CTAB</topic><topic>Glucose</topic><topic>Morphology</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nanoplates</topic><topic>nanosilver</topic><topic>nanospheres</topic><topic>Nanostructure</topic><topic>Ostwald ripening</topic><topic>Reaction time</topic><topic>Silver</topic><topic>Silver nanoribbons</topic><topic>temperature</topic><topic>transmission electron microscopy</topic><topic>ultraviolet-visible spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zaheer, Zoya</creatorcontrib><creatorcontrib>Rafiuddin</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Colloids and surfaces. A, Physicochemical and engineering aspects</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zaheer, Zoya</au><au>Rafiuddin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crystal growth of different morphologies (nanospheres, nanoribbons and nanoplates) of silver nanoparticles</atitle><jtitle>Colloids and surfaces. A, Physicochemical and engineering aspects</jtitle><date>2012-01-05</date><risdate>2012</risdate><volume>393</volume><issue>5</issue><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>0927-7757</issn><eissn>1873-4359</eissn><abstract>Different silver nanomaterial (nanoribbons, nanospheres and tunicate nanoplates) have been prepared by silver-mirror reaction. [Display omitted] ► Formation of silver nanoplates, nanoribbons and nanospheres is reported in cetyltrimethlyammonium bromide. ► Ammonia concentrations and reaction time determined the morphology of silver nanoparticles. ► Peak and shoulder in the UV–vis spectra is due to the different optical properties of silver nanocrystals. Silver nanoribbons and nanoplates have been synthesized by the classical silver-mirror reaction by changing the reaction conditions at room temperature. It was found that the reaction time and [ammonia] were an important factor for the growth of nanoparticles having different morphologies. Silver nanoplates and nanoribbons can be achieved in high yield by adjusting the reaction time and ammonia content, respectively. The formation rate of silver nanoparticles was investigated by UV–visible spectroscopy. Transmission electron microscopy (TEM) and selected areas electron diffraction (SAED) have been employed to characterize the resulting nanoplates and nanoribbons. Ostwald ripening process was observed which caused fusion among growing small spheres silver nanoparticles leads to the formation of nanoribbons at lower [ammonia].</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.colsurfa.2011.08.018</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0927-7757
ispartof Colloids and surfaces. A, Physicochemical and engineering aspects, 2012-01, Vol.393 (5), p.1-5
issn 0927-7757
1873-4359
language eng
recordid cdi_proquest_miscellaneous_1010900992
source Elsevier ScienceDirect Journals Complete
subjects Ammonia
colloids
CTAB
Glucose
Morphology
Nanocomposites
Nanomaterials
Nanoparticles
Nanoplates
nanosilver
nanospheres
Nanostructure
Ostwald ripening
Reaction time
Silver
Silver nanoribbons
temperature
transmission electron microscopy
ultraviolet-visible spectroscopy
title Crystal growth of different morphologies (nanospheres, nanoribbons and nanoplates) of silver nanoparticles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A05%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crystal%20growth%20of%20different%20morphologies%20(nanospheres,%20nanoribbons%20and%20nanoplates)%20of%20silver%20nanoparticles&rft.jtitle=Colloids%20and%20surfaces.%20A,%20Physicochemical%20and%20engineering%20aspects&rft.au=Zaheer,%20Zoya&rft.date=2012-01-05&rft.volume=393&rft.issue=5&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=0927-7757&rft.eissn=1873-4359&rft_id=info:doi/10.1016/j.colsurfa.2011.08.018&rft_dat=%3Cproquest_cross%3E1010900992%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1010900992&rft_id=info:pmid/&rft_els_id=S0927775711005097&rfr_iscdi=true