Crystal growth of different morphologies (nanospheres, nanoribbons and nanoplates) of silver nanoparticles
Different silver nanomaterial (nanoribbons, nanospheres and tunicate nanoplates) have been prepared by silver-mirror reaction. [Display omitted] ► Formation of silver nanoplates, nanoribbons and nanospheres is reported in cetyltrimethlyammonium bromide. ► Ammonia concentrations and reaction time det...
Gespeichert in:
Veröffentlicht in: | Colloids and surfaces. A, Physicochemical and engineering aspects Physicochemical and engineering aspects, 2012-01, Vol.393 (5), p.1-5 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5 |
---|---|
container_issue | 5 |
container_start_page | 1 |
container_title | Colloids and surfaces. A, Physicochemical and engineering aspects |
container_volume | 393 |
creator | Zaheer, Zoya Rafiuddin |
description | Different silver nanomaterial (nanoribbons, nanospheres and tunicate nanoplates) have been prepared by silver-mirror reaction.
[Display omitted]
► Formation of silver nanoplates, nanoribbons and nanospheres is reported in cetyltrimethlyammonium bromide. ► Ammonia concentrations and reaction time determined the morphology of silver nanoparticles. ► Peak and shoulder in the UV–vis spectra is due to the different optical properties of silver nanocrystals.
Silver nanoribbons and nanoplates have been synthesized by the classical silver-mirror reaction by changing the reaction conditions at room temperature. It was found that the reaction time and [ammonia] were an important factor for the growth of nanoparticles having different morphologies. Silver nanoplates and nanoribbons can be achieved in high yield by adjusting the reaction time and ammonia content, respectively. The formation rate of silver nanoparticles was investigated by UV–visible spectroscopy. Transmission electron microscopy (TEM) and selected areas electron diffraction (SAED) have been employed to characterize the resulting nanoplates and nanoribbons. Ostwald ripening process was observed which caused fusion among growing small spheres silver nanoparticles leads to the formation of nanoribbons at lower [ammonia]. |
doi_str_mv | 10.1016/j.colsurfa.2011.08.018 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1010900992</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927775711005097</els_id><sourcerecordid>1010900992</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-26567886000833eea8a4da0eb17698d5523eff05b0e4570f391aa3edbbcf7cba3</originalsourceid><addsrcrecordid>eNqFkE1v1DAQhi0EEkvpX4Aci0TScZzE8Q20ghapUg-0Z8txxrteeePgybbqv8dL4Mxp9M488_Uy9oFDxYF314fKxkCn5ExVA-cV9BXw_hXb8F6KshGtes02oGpZStnKt-wd0QEAmlaqDTts0wstJhS7FJ-XfRFdMXrnMOG0FMeY5n0MceeRiqvJTJHmfS7R5-Iskh-GOFFhpvGPnoNZkD6dZ5APT5jWrEmLtwHpPXvjTCC8_Bsv2OP3bw_b2_Lu_ubH9utdaUWnlrLu2k72fZdP7IVANL1pRgM4cNmpfmzbWqBz0A6A-QVwQnFjBI7DYJ20gxEX7GqdO6f464S06KMniyGYCeOJdDYNFIBSdUa7FbUpEiV0ek7-aNJLhs5cpw_6n7n6bK6GXmdzc-PHtdGZqM0uedKPPzPQAnDZNIpn4stKYH71yWPSZD1OFkef0C56jP5_S34DVQ-ScQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1010900992</pqid></control><display><type>article</type><title>Crystal growth of different morphologies (nanospheres, nanoribbons and nanoplates) of silver nanoparticles</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Zaheer, Zoya ; Rafiuddin</creator><creatorcontrib>Zaheer, Zoya ; Rafiuddin</creatorcontrib><description>Different silver nanomaterial (nanoribbons, nanospheres and tunicate nanoplates) have been prepared by silver-mirror reaction.
[Display omitted]
► Formation of silver nanoplates, nanoribbons and nanospheres is reported in cetyltrimethlyammonium bromide. ► Ammonia concentrations and reaction time determined the morphology of silver nanoparticles. ► Peak and shoulder in the UV–vis spectra is due to the different optical properties of silver nanocrystals.
Silver nanoribbons and nanoplates have been synthesized by the classical silver-mirror reaction by changing the reaction conditions at room temperature. It was found that the reaction time and [ammonia] were an important factor for the growth of nanoparticles having different morphologies. Silver nanoplates and nanoribbons can be achieved in high yield by adjusting the reaction time and ammonia content, respectively. The formation rate of silver nanoparticles was investigated by UV–visible spectroscopy. Transmission electron microscopy (TEM) and selected areas electron diffraction (SAED) have been employed to characterize the resulting nanoplates and nanoribbons. Ostwald ripening process was observed which caused fusion among growing small spheres silver nanoparticles leads to the formation of nanoribbons at lower [ammonia].</description><identifier>ISSN: 0927-7757</identifier><identifier>EISSN: 1873-4359</identifier><identifier>DOI: 10.1016/j.colsurfa.2011.08.018</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Ammonia ; colloids ; CTAB ; Glucose ; Morphology ; Nanocomposites ; Nanomaterials ; Nanoparticles ; Nanoplates ; nanosilver ; nanospheres ; Nanostructure ; Ostwald ripening ; Reaction time ; Silver ; Silver nanoribbons ; temperature ; transmission electron microscopy ; ultraviolet-visible spectroscopy</subject><ispartof>Colloids and surfaces. A, Physicochemical and engineering aspects, 2012-01, Vol.393 (5), p.1-5</ispartof><rights>2011 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-26567886000833eea8a4da0eb17698d5523eff05b0e4570f391aa3edbbcf7cba3</citedby><cites>FETCH-LOGICAL-c369t-26567886000833eea8a4da0eb17698d5523eff05b0e4570f391aa3edbbcf7cba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.colsurfa.2011.08.018$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Zaheer, Zoya</creatorcontrib><creatorcontrib>Rafiuddin</creatorcontrib><title>Crystal growth of different morphologies (nanospheres, nanoribbons and nanoplates) of silver nanoparticles</title><title>Colloids and surfaces. A, Physicochemical and engineering aspects</title><description>Different silver nanomaterial (nanoribbons, nanospheres and tunicate nanoplates) have been prepared by silver-mirror reaction.
[Display omitted]
► Formation of silver nanoplates, nanoribbons and nanospheres is reported in cetyltrimethlyammonium bromide. ► Ammonia concentrations and reaction time determined the morphology of silver nanoparticles. ► Peak and shoulder in the UV–vis spectra is due to the different optical properties of silver nanocrystals.
Silver nanoribbons and nanoplates have been synthesized by the classical silver-mirror reaction by changing the reaction conditions at room temperature. It was found that the reaction time and [ammonia] were an important factor for the growth of nanoparticles having different morphologies. Silver nanoplates and nanoribbons can be achieved in high yield by adjusting the reaction time and ammonia content, respectively. The formation rate of silver nanoparticles was investigated by UV–visible spectroscopy. Transmission electron microscopy (TEM) and selected areas electron diffraction (SAED) have been employed to characterize the resulting nanoplates and nanoribbons. Ostwald ripening process was observed which caused fusion among growing small spheres silver nanoparticles leads to the formation of nanoribbons at lower [ammonia].</description><subject>Ammonia</subject><subject>colloids</subject><subject>CTAB</subject><subject>Glucose</subject><subject>Morphology</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nanoplates</subject><subject>nanosilver</subject><subject>nanospheres</subject><subject>Nanostructure</subject><subject>Ostwald ripening</subject><subject>Reaction time</subject><subject>Silver</subject><subject>Silver nanoribbons</subject><subject>temperature</subject><subject>transmission electron microscopy</subject><subject>ultraviolet-visible spectroscopy</subject><issn>0927-7757</issn><issn>1873-4359</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkE1v1DAQhi0EEkvpX4Aci0TScZzE8Q20ghapUg-0Z8txxrteeePgybbqv8dL4Mxp9M488_Uy9oFDxYF314fKxkCn5ExVA-cV9BXw_hXb8F6KshGtes02oGpZStnKt-wd0QEAmlaqDTts0wstJhS7FJ-XfRFdMXrnMOG0FMeY5n0MceeRiqvJTJHmfS7R5-Iskh-GOFFhpvGPnoNZkD6dZ5APT5jWrEmLtwHpPXvjTCC8_Bsv2OP3bw_b2_Lu_ubH9utdaUWnlrLu2k72fZdP7IVANL1pRgM4cNmpfmzbWqBz0A6A-QVwQnFjBI7DYJ20gxEX7GqdO6f464S06KMniyGYCeOJdDYNFIBSdUa7FbUpEiV0ek7-aNJLhs5cpw_6n7n6bK6GXmdzc-PHtdGZqM0uedKPPzPQAnDZNIpn4stKYH71yWPSZD1OFkef0C56jP5_S34DVQ-ScQ</recordid><startdate>20120105</startdate><enddate>20120105</enddate><creator>Zaheer, Zoya</creator><creator>Rafiuddin</creator><general>Elsevier B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20120105</creationdate><title>Crystal growth of different morphologies (nanospheres, nanoribbons and nanoplates) of silver nanoparticles</title><author>Zaheer, Zoya ; Rafiuddin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-26567886000833eea8a4da0eb17698d5523eff05b0e4570f391aa3edbbcf7cba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Ammonia</topic><topic>colloids</topic><topic>CTAB</topic><topic>Glucose</topic><topic>Morphology</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nanoplates</topic><topic>nanosilver</topic><topic>nanospheres</topic><topic>Nanostructure</topic><topic>Ostwald ripening</topic><topic>Reaction time</topic><topic>Silver</topic><topic>Silver nanoribbons</topic><topic>temperature</topic><topic>transmission electron microscopy</topic><topic>ultraviolet-visible spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zaheer, Zoya</creatorcontrib><creatorcontrib>Rafiuddin</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Colloids and surfaces. A, Physicochemical and engineering aspects</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zaheer, Zoya</au><au>Rafiuddin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crystal growth of different morphologies (nanospheres, nanoribbons and nanoplates) of silver nanoparticles</atitle><jtitle>Colloids and surfaces. A, Physicochemical and engineering aspects</jtitle><date>2012-01-05</date><risdate>2012</risdate><volume>393</volume><issue>5</issue><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>0927-7757</issn><eissn>1873-4359</eissn><abstract>Different silver nanomaterial (nanoribbons, nanospheres and tunicate nanoplates) have been prepared by silver-mirror reaction.
[Display omitted]
► Formation of silver nanoplates, nanoribbons and nanospheres is reported in cetyltrimethlyammonium bromide. ► Ammonia concentrations and reaction time determined the morphology of silver nanoparticles. ► Peak and shoulder in the UV–vis spectra is due to the different optical properties of silver nanocrystals.
Silver nanoribbons and nanoplates have been synthesized by the classical silver-mirror reaction by changing the reaction conditions at room temperature. It was found that the reaction time and [ammonia] were an important factor for the growth of nanoparticles having different morphologies. Silver nanoplates and nanoribbons can be achieved in high yield by adjusting the reaction time and ammonia content, respectively. The formation rate of silver nanoparticles was investigated by UV–visible spectroscopy. Transmission electron microscopy (TEM) and selected areas electron diffraction (SAED) have been employed to characterize the resulting nanoplates and nanoribbons. Ostwald ripening process was observed which caused fusion among growing small spheres silver nanoparticles leads to the formation of nanoribbons at lower [ammonia].</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.colsurfa.2011.08.018</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0927-7757 |
ispartof | Colloids and surfaces. A, Physicochemical and engineering aspects, 2012-01, Vol.393 (5), p.1-5 |
issn | 0927-7757 1873-4359 |
language | eng |
recordid | cdi_proquest_miscellaneous_1010900992 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Ammonia colloids CTAB Glucose Morphology Nanocomposites Nanomaterials Nanoparticles Nanoplates nanosilver nanospheres Nanostructure Ostwald ripening Reaction time Silver Silver nanoribbons temperature transmission electron microscopy ultraviolet-visible spectroscopy |
title | Crystal growth of different morphologies (nanospheres, nanoribbons and nanoplates) of silver nanoparticles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A05%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crystal%20growth%20of%20different%20morphologies%20(nanospheres,%20nanoribbons%20and%20nanoplates)%20of%20silver%20nanoparticles&rft.jtitle=Colloids%20and%20surfaces.%20A,%20Physicochemical%20and%20engineering%20aspects&rft.au=Zaheer,%20Zoya&rft.date=2012-01-05&rft.volume=393&rft.issue=5&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=0927-7757&rft.eissn=1873-4359&rft_id=info:doi/10.1016/j.colsurfa.2011.08.018&rft_dat=%3Cproquest_cross%3E1010900992%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1010900992&rft_id=info:pmid/&rft_els_id=S0927775711005097&rfr_iscdi=true |