Analytical nonautonomous soliton solutions for the cubic–quintic nonlinear Schrödinger equation with distributed coefficients
In this paper, we find the exact bright, dark and gray analytical nonautonomous soliton solutions of the generalized CQNLSE with spatially inhomogeneous group velocity dispersion (GVD) and amplification or attenuation by the similarity transformation method under certain parametric conditions. As an...
Gespeichert in:
Veröffentlicht in: | Optics communications 2012-03, Vol.285 (5), p.755-760 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 760 |
---|---|
container_issue | 5 |
container_start_page | 755 |
container_title | Optics communications |
container_volume | 285 |
creator | He, Ji-da Zhang, Jie-fang Zhang, Meng-yang Dai, Chao-qing |
description | In this paper, we find the exact bright, dark and gray analytical nonautonomous soliton solutions of the generalized CQNLSE with spatially inhomogeneous group velocity dispersion (GVD) and amplification or attenuation by the similarity transformation method under certain parametric conditions. As an example, we investigate their propagation dynamics in the soliton control system. In addition, the interaction of two neighboring solitary waves is discussed, and the results show that the interaction of two neighboring solitary waves can be restricted by choosing the distributed coefficients appropriately. Finally, the stability of the solutions is checked by direct numerical simulation. |
doi_str_mv | 10.1016/j.optcom.2011.10.087 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1010900494</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0030401811012302</els_id><sourcerecordid>1010900494</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-8bb5f93c1306e15503528ff2b3dfaf93d9cf5ef7ccd8a975d1b1ad59596b7a263</originalsourceid><addsrcrecordid>eNp9kD1uGzEQhYkgBqLYvkEKlm5WGYr72wQQjMQOYMBF4nrBJYfWCCtSIrkO3OkOvosv4JvkJOFCqV09zMz7BniPsS8ClgJE_XW79Puk_W65AiHyaglt84EtRNvIAqSAj2wBIKEoQbSf2OcYtwAgStku2HHt1PicSKuRO-_UlLzzOz9FHv1IeZh1SuRd5NYHnjbI9TSQ_nt8OUzkMjlzIzlUgf_Sm_D2asg9YuB4mNQM8j-UNtxQTIGGKaHh2qO1pAldihfszKox4uV_PWcPP77_vr4t7u5vfl6v7wotZZeKdhgq20ktJNQoqgpktWqtXQ3SWJUPptO2QttobVrVNZURg1Cm6qquHhq1quU5uzr93Qd_mDCmfkdR4zgqhzlun4uEDqDsymwtT1YdfIwBbb8PtFPhOZtmX91v-1Ph_Vz4vM2FZ-zbCcMc44kw9HGOqNFQQJ164-n9B_8A5YaSOQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1010900494</pqid></control><display><type>article</type><title>Analytical nonautonomous soliton solutions for the cubic–quintic nonlinear Schrödinger equation with distributed coefficients</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>He, Ji-da ; Zhang, Jie-fang ; Zhang, Meng-yang ; Dai, Chao-qing</creator><creatorcontrib>He, Ji-da ; Zhang, Jie-fang ; Zhang, Meng-yang ; Dai, Chao-qing</creatorcontrib><description>In this paper, we find the exact bright, dark and gray analytical nonautonomous soliton solutions of the generalized CQNLSE with spatially inhomogeneous group velocity dispersion (GVD) and amplification or attenuation by the similarity transformation method under certain parametric conditions. As an example, we investigate their propagation dynamics in the soliton control system. In addition, the interaction of two neighboring solitary waves is discussed, and the results show that the interaction of two neighboring solitary waves can be restricted by choosing the distributed coefficients appropriately. Finally, the stability of the solutions is checked by direct numerical simulation.</description><identifier>ISSN: 0030-4018</identifier><identifier>EISSN: 1873-0310</identifier><identifier>DOI: 10.1016/j.optcom.2011.10.087</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Attenuation ; Dispersions ; Dynamic tests ; Mathematical analysis ; Mathematical models ; Similarity ; Solitary waves ; Solitons</subject><ispartof>Optics communications, 2012-03, Vol.285 (5), p.755-760</ispartof><rights>2011 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-8bb5f93c1306e15503528ff2b3dfaf93d9cf5ef7ccd8a975d1b1ad59596b7a263</citedby><cites>FETCH-LOGICAL-c339t-8bb5f93c1306e15503528ff2b3dfaf93d9cf5ef7ccd8a975d1b1ad59596b7a263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.optcom.2011.10.087$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids></links><search><creatorcontrib>He, Ji-da</creatorcontrib><creatorcontrib>Zhang, Jie-fang</creatorcontrib><creatorcontrib>Zhang, Meng-yang</creatorcontrib><creatorcontrib>Dai, Chao-qing</creatorcontrib><title>Analytical nonautonomous soliton solutions for the cubic–quintic nonlinear Schrödinger equation with distributed coefficients</title><title>Optics communications</title><description>In this paper, we find the exact bright, dark and gray analytical nonautonomous soliton solutions of the generalized CQNLSE with spatially inhomogeneous group velocity dispersion (GVD) and amplification or attenuation by the similarity transformation method under certain parametric conditions. As an example, we investigate their propagation dynamics in the soliton control system. In addition, the interaction of two neighboring solitary waves is discussed, and the results show that the interaction of two neighboring solitary waves can be restricted by choosing the distributed coefficients appropriately. Finally, the stability of the solutions is checked by direct numerical simulation.</description><subject>Attenuation</subject><subject>Dispersions</subject><subject>Dynamic tests</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Similarity</subject><subject>Solitary waves</subject><subject>Solitons</subject><issn>0030-4018</issn><issn>1873-0310</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kD1uGzEQhYkgBqLYvkEKlm5WGYr72wQQjMQOYMBF4nrBJYfWCCtSIrkO3OkOvosv4JvkJOFCqV09zMz7BniPsS8ClgJE_XW79Puk_W65AiHyaglt84EtRNvIAqSAj2wBIKEoQbSf2OcYtwAgStku2HHt1PicSKuRO-_UlLzzOz9FHv1IeZh1SuRd5NYHnjbI9TSQ_nt8OUzkMjlzIzlUgf_Sm_D2asg9YuB4mNQM8j-UNtxQTIGGKaHh2qO1pAldihfszKox4uV_PWcPP77_vr4t7u5vfl6v7wotZZeKdhgq20ktJNQoqgpktWqtXQ3SWJUPptO2QttobVrVNZURg1Cm6qquHhq1quU5uzr93Qd_mDCmfkdR4zgqhzlun4uEDqDsymwtT1YdfIwBbb8PtFPhOZtmX91v-1Ph_Vz4vM2FZ-zbCcMc44kw9HGOqNFQQJ164-n9B_8A5YaSOQ</recordid><startdate>20120301</startdate><enddate>20120301</enddate><creator>He, Ji-da</creator><creator>Zhang, Jie-fang</creator><creator>Zhang, Meng-yang</creator><creator>Dai, Chao-qing</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20120301</creationdate><title>Analytical nonautonomous soliton solutions for the cubic–quintic nonlinear Schrödinger equation with distributed coefficients</title><author>He, Ji-da ; Zhang, Jie-fang ; Zhang, Meng-yang ; Dai, Chao-qing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-8bb5f93c1306e15503528ff2b3dfaf93d9cf5ef7ccd8a975d1b1ad59596b7a263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Attenuation</topic><topic>Dispersions</topic><topic>Dynamic tests</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Similarity</topic><topic>Solitary waves</topic><topic>Solitons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Ji-da</creatorcontrib><creatorcontrib>Zhang, Jie-fang</creatorcontrib><creatorcontrib>Zhang, Meng-yang</creatorcontrib><creatorcontrib>Dai, Chao-qing</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Optics communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Ji-da</au><au>Zhang, Jie-fang</au><au>Zhang, Meng-yang</au><au>Dai, Chao-qing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytical nonautonomous soliton solutions for the cubic–quintic nonlinear Schrödinger equation with distributed coefficients</atitle><jtitle>Optics communications</jtitle><date>2012-03-01</date><risdate>2012</risdate><volume>285</volume><issue>5</issue><spage>755</spage><epage>760</epage><pages>755-760</pages><issn>0030-4018</issn><eissn>1873-0310</eissn><abstract>In this paper, we find the exact bright, dark and gray analytical nonautonomous soliton solutions of the generalized CQNLSE with spatially inhomogeneous group velocity dispersion (GVD) and amplification or attenuation by the similarity transformation method under certain parametric conditions. As an example, we investigate their propagation dynamics in the soliton control system. In addition, the interaction of two neighboring solitary waves is discussed, and the results show that the interaction of two neighboring solitary waves can be restricted by choosing the distributed coefficients appropriately. Finally, the stability of the solutions is checked by direct numerical simulation.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.optcom.2011.10.087</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0030-4018 |
ispartof | Optics communications, 2012-03, Vol.285 (5), p.755-760 |
issn | 0030-4018 1873-0310 |
language | eng |
recordid | cdi_proquest_miscellaneous_1010900494 |
source | Elsevier ScienceDirect Journals Complete - AutoHoldings |
subjects | Attenuation Dispersions Dynamic tests Mathematical analysis Mathematical models Similarity Solitary waves Solitons |
title | Analytical nonautonomous soliton solutions for the cubic–quintic nonlinear Schrödinger equation with distributed coefficients |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A04%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytical%20nonautonomous%20soliton%20solutions%20for%20the%20cubic%E2%80%93quintic%20nonlinear%20Schr%C3%B6dinger%20equation%20with%20distributed%20coefficients&rft.jtitle=Optics%20communications&rft.au=He,%20Ji-da&rft.date=2012-03-01&rft.volume=285&rft.issue=5&rft.spage=755&rft.epage=760&rft.pages=755-760&rft.issn=0030-4018&rft.eissn=1873-0310&rft_id=info:doi/10.1016/j.optcom.2011.10.087&rft_dat=%3Cproquest_cross%3E1010900494%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1010900494&rft_id=info:pmid/&rft_els_id=S0030401811012302&rfr_iscdi=true |