Analytical nonautonomous soliton solutions for the cubic–quintic nonlinear Schrödinger equation with distributed coefficients

In this paper, we find the exact bright, dark and gray analytical nonautonomous soliton solutions of the generalized CQNLSE with spatially inhomogeneous group velocity dispersion (GVD) and amplification or attenuation by the similarity transformation method under certain parametric conditions. As an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics communications 2012-03, Vol.285 (5), p.755-760
Hauptverfasser: He, Ji-da, Zhang, Jie-fang, Zhang, Meng-yang, Dai, Chao-qing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 760
container_issue 5
container_start_page 755
container_title Optics communications
container_volume 285
creator He, Ji-da
Zhang, Jie-fang
Zhang, Meng-yang
Dai, Chao-qing
description In this paper, we find the exact bright, dark and gray analytical nonautonomous soliton solutions of the generalized CQNLSE with spatially inhomogeneous group velocity dispersion (GVD) and amplification or attenuation by the similarity transformation method under certain parametric conditions. As an example, we investigate their propagation dynamics in the soliton control system. In addition, the interaction of two neighboring solitary waves is discussed, and the results show that the interaction of two neighboring solitary waves can be restricted by choosing the distributed coefficients appropriately. Finally, the stability of the solutions is checked by direct numerical simulation.
doi_str_mv 10.1016/j.optcom.2011.10.087
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1010900494</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0030401811012302</els_id><sourcerecordid>1010900494</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-8bb5f93c1306e15503528ff2b3dfaf93d9cf5ef7ccd8a975d1b1ad59596b7a263</originalsourceid><addsrcrecordid>eNp9kD1uGzEQhYkgBqLYvkEKlm5WGYr72wQQjMQOYMBF4nrBJYfWCCtSIrkO3OkOvosv4JvkJOFCqV09zMz7BniPsS8ClgJE_XW79Puk_W65AiHyaglt84EtRNvIAqSAj2wBIKEoQbSf2OcYtwAgStku2HHt1PicSKuRO-_UlLzzOz9FHv1IeZh1SuRd5NYHnjbI9TSQ_nt8OUzkMjlzIzlUgf_Sm_D2asg9YuB4mNQM8j-UNtxQTIGGKaHh2qO1pAldihfszKox4uV_PWcPP77_vr4t7u5vfl6v7wotZZeKdhgq20ktJNQoqgpktWqtXQ3SWJUPptO2QttobVrVNZURg1Cm6qquHhq1quU5uzr93Qd_mDCmfkdR4zgqhzlun4uEDqDsymwtT1YdfIwBbb8PtFPhOZtmX91v-1Ph_Vz4vM2FZ-zbCcMc44kw9HGOqNFQQJ164-n9B_8A5YaSOQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1010900494</pqid></control><display><type>article</type><title>Analytical nonautonomous soliton solutions for the cubic–quintic nonlinear Schrödinger equation with distributed coefficients</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>He, Ji-da ; Zhang, Jie-fang ; Zhang, Meng-yang ; Dai, Chao-qing</creator><creatorcontrib>He, Ji-da ; Zhang, Jie-fang ; Zhang, Meng-yang ; Dai, Chao-qing</creatorcontrib><description>In this paper, we find the exact bright, dark and gray analytical nonautonomous soliton solutions of the generalized CQNLSE with spatially inhomogeneous group velocity dispersion (GVD) and amplification or attenuation by the similarity transformation method under certain parametric conditions. As an example, we investigate their propagation dynamics in the soliton control system. In addition, the interaction of two neighboring solitary waves is discussed, and the results show that the interaction of two neighboring solitary waves can be restricted by choosing the distributed coefficients appropriately. Finally, the stability of the solutions is checked by direct numerical simulation.</description><identifier>ISSN: 0030-4018</identifier><identifier>EISSN: 1873-0310</identifier><identifier>DOI: 10.1016/j.optcom.2011.10.087</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Attenuation ; Dispersions ; Dynamic tests ; Mathematical analysis ; Mathematical models ; Similarity ; Solitary waves ; Solitons</subject><ispartof>Optics communications, 2012-03, Vol.285 (5), p.755-760</ispartof><rights>2011 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-8bb5f93c1306e15503528ff2b3dfaf93d9cf5ef7ccd8a975d1b1ad59596b7a263</citedby><cites>FETCH-LOGICAL-c339t-8bb5f93c1306e15503528ff2b3dfaf93d9cf5ef7ccd8a975d1b1ad59596b7a263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.optcom.2011.10.087$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids></links><search><creatorcontrib>He, Ji-da</creatorcontrib><creatorcontrib>Zhang, Jie-fang</creatorcontrib><creatorcontrib>Zhang, Meng-yang</creatorcontrib><creatorcontrib>Dai, Chao-qing</creatorcontrib><title>Analytical nonautonomous soliton solutions for the cubic–quintic nonlinear Schrödinger equation with distributed coefficients</title><title>Optics communications</title><description>In this paper, we find the exact bright, dark and gray analytical nonautonomous soliton solutions of the generalized CQNLSE with spatially inhomogeneous group velocity dispersion (GVD) and amplification or attenuation by the similarity transformation method under certain parametric conditions. As an example, we investigate their propagation dynamics in the soliton control system. In addition, the interaction of two neighboring solitary waves is discussed, and the results show that the interaction of two neighboring solitary waves can be restricted by choosing the distributed coefficients appropriately. Finally, the stability of the solutions is checked by direct numerical simulation.</description><subject>Attenuation</subject><subject>Dispersions</subject><subject>Dynamic tests</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Similarity</subject><subject>Solitary waves</subject><subject>Solitons</subject><issn>0030-4018</issn><issn>1873-0310</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kD1uGzEQhYkgBqLYvkEKlm5WGYr72wQQjMQOYMBF4nrBJYfWCCtSIrkO3OkOvosv4JvkJOFCqV09zMz7BniPsS8ClgJE_XW79Puk_W65AiHyaglt84EtRNvIAqSAj2wBIKEoQbSf2OcYtwAgStku2HHt1PicSKuRO-_UlLzzOz9FHv1IeZh1SuRd5NYHnjbI9TSQ_nt8OUzkMjlzIzlUgf_Sm_D2asg9YuB4mNQM8j-UNtxQTIGGKaHh2qO1pAldihfszKox4uV_PWcPP77_vr4t7u5vfl6v7wotZZeKdhgq20ktJNQoqgpktWqtXQ3SWJUPptO2QttobVrVNZURg1Cm6qquHhq1quU5uzr93Qd_mDCmfkdR4zgqhzlun4uEDqDsymwtT1YdfIwBbb8PtFPhOZtmX91v-1Ph_Vz4vM2FZ-zbCcMc44kw9HGOqNFQQJ164-n9B_8A5YaSOQ</recordid><startdate>20120301</startdate><enddate>20120301</enddate><creator>He, Ji-da</creator><creator>Zhang, Jie-fang</creator><creator>Zhang, Meng-yang</creator><creator>Dai, Chao-qing</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20120301</creationdate><title>Analytical nonautonomous soliton solutions for the cubic–quintic nonlinear Schrödinger equation with distributed coefficients</title><author>He, Ji-da ; Zhang, Jie-fang ; Zhang, Meng-yang ; Dai, Chao-qing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-8bb5f93c1306e15503528ff2b3dfaf93d9cf5ef7ccd8a975d1b1ad59596b7a263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Attenuation</topic><topic>Dispersions</topic><topic>Dynamic tests</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Similarity</topic><topic>Solitary waves</topic><topic>Solitons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Ji-da</creatorcontrib><creatorcontrib>Zhang, Jie-fang</creatorcontrib><creatorcontrib>Zhang, Meng-yang</creatorcontrib><creatorcontrib>Dai, Chao-qing</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Optics communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Ji-da</au><au>Zhang, Jie-fang</au><au>Zhang, Meng-yang</au><au>Dai, Chao-qing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytical nonautonomous soliton solutions for the cubic–quintic nonlinear Schrödinger equation with distributed coefficients</atitle><jtitle>Optics communications</jtitle><date>2012-03-01</date><risdate>2012</risdate><volume>285</volume><issue>5</issue><spage>755</spage><epage>760</epage><pages>755-760</pages><issn>0030-4018</issn><eissn>1873-0310</eissn><abstract>In this paper, we find the exact bright, dark and gray analytical nonautonomous soliton solutions of the generalized CQNLSE with spatially inhomogeneous group velocity dispersion (GVD) and amplification or attenuation by the similarity transformation method under certain parametric conditions. As an example, we investigate their propagation dynamics in the soliton control system. In addition, the interaction of two neighboring solitary waves is discussed, and the results show that the interaction of two neighboring solitary waves can be restricted by choosing the distributed coefficients appropriately. Finally, the stability of the solutions is checked by direct numerical simulation.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.optcom.2011.10.087</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0030-4018
ispartof Optics communications, 2012-03, Vol.285 (5), p.755-760
issn 0030-4018
1873-0310
language eng
recordid cdi_proquest_miscellaneous_1010900494
source Elsevier ScienceDirect Journals Complete - AutoHoldings
subjects Attenuation
Dispersions
Dynamic tests
Mathematical analysis
Mathematical models
Similarity
Solitary waves
Solitons
title Analytical nonautonomous soliton solutions for the cubic–quintic nonlinear Schrödinger equation with distributed coefficients
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A04%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytical%20nonautonomous%20soliton%20solutions%20for%20the%20cubic%E2%80%93quintic%20nonlinear%20Schr%C3%B6dinger%20equation%20with%20distributed%20coefficients&rft.jtitle=Optics%20communications&rft.au=He,%20Ji-da&rft.date=2012-03-01&rft.volume=285&rft.issue=5&rft.spage=755&rft.epage=760&rft.pages=755-760&rft.issn=0030-4018&rft.eissn=1873-0310&rft_id=info:doi/10.1016/j.optcom.2011.10.087&rft_dat=%3Cproquest_cross%3E1010900494%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1010900494&rft_id=info:pmid/&rft_els_id=S0030401811012302&rfr_iscdi=true