A Hierarchical Model Incorporating Segmented Regions and Pixel Descriptors for Video Background Subtraction
Background subtraction is important for detecting moving objects in videos. Currently, there are many approaches to performing background subtraction. However, they usually neglect the fact that the background images consist of different objects whose conditions may change frequently. In this paper,...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial informatics 2012-02, Vol.8 (1), p.118-127 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 127 |
---|---|
container_issue | 1 |
container_start_page | 118 |
container_title | IEEE transactions on industrial informatics |
container_volume | 8 |
creator | Chen, Shengyong Zhang, Jianhua Li, Youfu Zhang, Jianwei |
description | Background subtraction is important for detecting moving objects in videos. Currently, there are many approaches to performing background subtraction. However, they usually neglect the fact that the background images consist of different objects whose conditions may change frequently. In this paper, a novel hierarchical background model is proposed based on segmented background images. It first segments the background images into several regions by the mean-shift algorithm. Then, a hierarchical model, which consists of the region models and pixel models, is created. The region model is a kind of approximate Gaussian mixture model extracted from the histogram of a specific region. The pixel model is based on the cooccurrence of image variations described by histograms of oriented gradients of pixels in each region. Benefiting from the background segmentation, the region models and pixel models corresponding to different regions can be set to different parameters. The pixel descriptors are calculated only from neighboring pixels belonging to the same object. The experimental results are carried out with a video database to demonstrate the effectiveness, which is applied to both static and dynamic scenes by comparing it with some well-known background subtraction methods. |
doi_str_mv | 10.1109/TII.2011.2173202 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1010900235</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6059503</ieee_id><sourcerecordid>2568143461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-cfe2e76c1348d3cd0bde146427622e4540804d1f8dec63537607916e10f92bee3</originalsourceid><addsrcrecordid>eNpdkE1LxDAQhoMoqKt3wUvw5KXrJGmb7VHXjy2sKH5dSzaZ1mi3qUkL-u-NrHjwNMPwvC_DQ8gRgyljUJw9leWUA2NTzqTgwLfIHitSlgBksB33LGNJvItdsh_CG4CQIIo98n5OFxa98vrVatXSW2ewpWWnne-dV4PtGvqIzRq7AQ19wMa6LlDVGXpvPyN5iUF72w_OB1o7T1-sQUcvlH5vvBsj9jiuBq_0EHMHZKdWbcDD3zkhz9dXT_NFsry7Kefny0QLLoZE18hR5pqJdGaENrAyyNI85TLnHNMshRmkhtUzgzoXmZA5yILlyKAu-ApRTMjpprf37mPEMFRrGzS2rerQjaFiEIUB8JidkJN_6JsbfRe_qwomeZFJLiMEG0h7F4LHuuq9XSv_FZuqH_lVlF_9yK9-5cfI8SZiEfEPzyErMhDiG-Itf8Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>917295727</pqid></control><display><type>article</type><title>A Hierarchical Model Incorporating Segmented Regions and Pixel Descriptors for Video Background Subtraction</title><source>IEEE Electronic Library Online</source><creator>Chen, Shengyong ; Zhang, Jianhua ; Li, Youfu ; Zhang, Jianwei</creator><creatorcontrib>Chen, Shengyong ; Zhang, Jianhua ; Li, Youfu ; Zhang, Jianwei</creatorcontrib><description>Background subtraction is important for detecting moving objects in videos. Currently, there are many approaches to performing background subtraction. However, they usually neglect the fact that the background images consist of different objects whose conditions may change frequently. In this paper, a novel hierarchical background model is proposed based on segmented background images. It first segments the background images into several regions by the mean-shift algorithm. Then, a hierarchical model, which consists of the region models and pixel models, is created. The region model is a kind of approximate Gaussian mixture model extracted from the histogram of a specific region. The pixel model is based on the cooccurrence of image variations described by histograms of oriented gradients of pixels in each region. Benefiting from the background segmentation, the region models and pixel models corresponding to different regions can be set to different parameters. The pixel descriptors are calculated only from neighboring pixels belonging to the same object. The experimental results are carried out with a video database to demonstrate the effectiveness, which is applied to both static and dynamic scenes by comparing it with some well-known background subtraction methods.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2011.2173202</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptation models ; Approximation ; Background subtraction ; Computational modeling ; cooccurrence of image variation ; Gaussian ; hierarchical background model (HBM) ; Histograms ; Image segmentation ; Informatics ; Mathematical models ; pixel model ; Pixels ; region segmentation ; Studies ; Subtraction ; Training</subject><ispartof>IEEE transactions on industrial informatics, 2012-02, Vol.8 (1), p.118-127</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2012</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-cfe2e76c1348d3cd0bde146427622e4540804d1f8dec63537607916e10f92bee3</citedby><cites>FETCH-LOGICAL-c323t-cfe2e76c1348d3cd0bde146427622e4540804d1f8dec63537607916e10f92bee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6059503$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6059503$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Shengyong</creatorcontrib><creatorcontrib>Zhang, Jianhua</creatorcontrib><creatorcontrib>Li, Youfu</creatorcontrib><creatorcontrib>Zhang, Jianwei</creatorcontrib><title>A Hierarchical Model Incorporating Segmented Regions and Pixel Descriptors for Video Background Subtraction</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>Background subtraction is important for detecting moving objects in videos. Currently, there are many approaches to performing background subtraction. However, they usually neglect the fact that the background images consist of different objects whose conditions may change frequently. In this paper, a novel hierarchical background model is proposed based on segmented background images. It first segments the background images into several regions by the mean-shift algorithm. Then, a hierarchical model, which consists of the region models and pixel models, is created. The region model is a kind of approximate Gaussian mixture model extracted from the histogram of a specific region. The pixel model is based on the cooccurrence of image variations described by histograms of oriented gradients of pixels in each region. Benefiting from the background segmentation, the region models and pixel models corresponding to different regions can be set to different parameters. The pixel descriptors are calculated only from neighboring pixels belonging to the same object. The experimental results are carried out with a video database to demonstrate the effectiveness, which is applied to both static and dynamic scenes by comparing it with some well-known background subtraction methods.</description><subject>Adaptation models</subject><subject>Approximation</subject><subject>Background subtraction</subject><subject>Computational modeling</subject><subject>cooccurrence of image variation</subject><subject>Gaussian</subject><subject>hierarchical background model (HBM)</subject><subject>Histograms</subject><subject>Image segmentation</subject><subject>Informatics</subject><subject>Mathematical models</subject><subject>pixel model</subject><subject>Pixels</subject><subject>region segmentation</subject><subject>Studies</subject><subject>Subtraction</subject><subject>Training</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1LxDAQhoMoqKt3wUvw5KXrJGmb7VHXjy2sKH5dSzaZ1mi3qUkL-u-NrHjwNMPwvC_DQ8gRgyljUJw9leWUA2NTzqTgwLfIHitSlgBksB33LGNJvItdsh_CG4CQIIo98n5OFxa98vrVatXSW2ewpWWnne-dV4PtGvqIzRq7AQ19wMa6LlDVGXpvPyN5iUF72w_OB1o7T1-sQUcvlH5vvBsj9jiuBq_0EHMHZKdWbcDD3zkhz9dXT_NFsry7Kefny0QLLoZE18hR5pqJdGaENrAyyNI85TLnHNMshRmkhtUzgzoXmZA5yILlyKAu-ApRTMjpprf37mPEMFRrGzS2rerQjaFiEIUB8JidkJN_6JsbfRe_qwomeZFJLiMEG0h7F4LHuuq9XSv_FZuqH_lVlF_9yK9-5cfI8SZiEfEPzyErMhDiG-Itf8Y</recordid><startdate>201202</startdate><enddate>201202</enddate><creator>Chen, Shengyong</creator><creator>Zhang, Jianhua</creator><creator>Li, Youfu</creator><creator>Zhang, Jianwei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201202</creationdate><title>A Hierarchical Model Incorporating Segmented Regions and Pixel Descriptors for Video Background Subtraction</title><author>Chen, Shengyong ; Zhang, Jianhua ; Li, Youfu ; Zhang, Jianwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-cfe2e76c1348d3cd0bde146427622e4540804d1f8dec63537607916e10f92bee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adaptation models</topic><topic>Approximation</topic><topic>Background subtraction</topic><topic>Computational modeling</topic><topic>cooccurrence of image variation</topic><topic>Gaussian</topic><topic>hierarchical background model (HBM)</topic><topic>Histograms</topic><topic>Image segmentation</topic><topic>Informatics</topic><topic>Mathematical models</topic><topic>pixel model</topic><topic>Pixels</topic><topic>region segmentation</topic><topic>Studies</topic><topic>Subtraction</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Chen, Shengyong</creatorcontrib><creatorcontrib>Zhang, Jianhua</creatorcontrib><creatorcontrib>Li, Youfu</creatorcontrib><creatorcontrib>Zhang, Jianwei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Shengyong</au><au>Zhang, Jianhua</au><au>Li, Youfu</au><au>Zhang, Jianwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Hierarchical Model Incorporating Segmented Regions and Pixel Descriptors for Video Background Subtraction</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2012-02</date><risdate>2012</risdate><volume>8</volume><issue>1</issue><spage>118</spage><epage>127</epage><pages>118-127</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>Background subtraction is important for detecting moving objects in videos. Currently, there are many approaches to performing background subtraction. However, they usually neglect the fact that the background images consist of different objects whose conditions may change frequently. In this paper, a novel hierarchical background model is proposed based on segmented background images. It first segments the background images into several regions by the mean-shift algorithm. Then, a hierarchical model, which consists of the region models and pixel models, is created. The region model is a kind of approximate Gaussian mixture model extracted from the histogram of a specific region. The pixel model is based on the cooccurrence of image variations described by histograms of oriented gradients of pixels in each region. Benefiting from the background segmentation, the region models and pixel models corresponding to different regions can be set to different parameters. The pixel descriptors are calculated only from neighboring pixels belonging to the same object. The experimental results are carried out with a video database to demonstrate the effectiveness, which is applied to both static and dynamic scenes by comparing it with some well-known background subtraction methods.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2011.2173202</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1551-3203 |
ispartof | IEEE transactions on industrial informatics, 2012-02, Vol.8 (1), p.118-127 |
issn | 1551-3203 1941-0050 |
language | eng |
recordid | cdi_proquest_miscellaneous_1010900235 |
source | IEEE Electronic Library Online |
subjects | Adaptation models Approximation Background subtraction Computational modeling cooccurrence of image variation Gaussian hierarchical background model (HBM) Histograms Image segmentation Informatics Mathematical models pixel model Pixels region segmentation Studies Subtraction Training |
title | A Hierarchical Model Incorporating Segmented Regions and Pixel Descriptors for Video Background Subtraction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T18%3A21%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Hierarchical%20Model%20Incorporating%20Segmented%20Regions%20and%20Pixel%20Descriptors%20for%20Video%20Background%20Subtraction&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Chen,%20Shengyong&rft.date=2012-02&rft.volume=8&rft.issue=1&rft.spage=118&rft.epage=127&rft.pages=118-127&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2011.2173202&rft_dat=%3Cproquest_RIE%3E2568143461%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=917295727&rft_id=info:pmid/&rft_ieee_id=6059503&rfr_iscdi=true |