A Hierarchical Model Incorporating Segmented Regions and Pixel Descriptors for Video Background Subtraction

Background subtraction is important for detecting moving objects in videos. Currently, there are many approaches to performing background subtraction. However, they usually neglect the fact that the background images consist of different objects whose conditions may change frequently. In this paper,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial informatics 2012-02, Vol.8 (1), p.118-127
Hauptverfasser: Chen, Shengyong, Zhang, Jianhua, Li, Youfu, Zhang, Jianwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 127
container_issue 1
container_start_page 118
container_title IEEE transactions on industrial informatics
container_volume 8
creator Chen, Shengyong
Zhang, Jianhua
Li, Youfu
Zhang, Jianwei
description Background subtraction is important for detecting moving objects in videos. Currently, there are many approaches to performing background subtraction. However, they usually neglect the fact that the background images consist of different objects whose conditions may change frequently. In this paper, a novel hierarchical background model is proposed based on segmented background images. It first segments the background images into several regions by the mean-shift algorithm. Then, a hierarchical model, which consists of the region models and pixel models, is created. The region model is a kind of approximate Gaussian mixture model extracted from the histogram of a specific region. The pixel model is based on the cooccurrence of image variations described by histograms of oriented gradients of pixels in each region. Benefiting from the background segmentation, the region models and pixel models corresponding to different regions can be set to different parameters. The pixel descriptors are calculated only from neighboring pixels belonging to the same object. The experimental results are carried out with a video database to demonstrate the effectiveness, which is applied to both static and dynamic scenes by comparing it with some well-known background subtraction methods.
doi_str_mv 10.1109/TII.2011.2173202
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1010900235</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6059503</ieee_id><sourcerecordid>2568143461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-cfe2e76c1348d3cd0bde146427622e4540804d1f8dec63537607916e10f92bee3</originalsourceid><addsrcrecordid>eNpdkE1LxDAQhoMoqKt3wUvw5KXrJGmb7VHXjy2sKH5dSzaZ1mi3qUkL-u-NrHjwNMPwvC_DQ8gRgyljUJw9leWUA2NTzqTgwLfIHitSlgBksB33LGNJvItdsh_CG4CQIIo98n5OFxa98vrVatXSW2ewpWWnne-dV4PtGvqIzRq7AQ19wMa6LlDVGXpvPyN5iUF72w_OB1o7T1-sQUcvlH5vvBsj9jiuBq_0EHMHZKdWbcDD3zkhz9dXT_NFsry7Kefny0QLLoZE18hR5pqJdGaENrAyyNI85TLnHNMshRmkhtUzgzoXmZA5yILlyKAu-ApRTMjpprf37mPEMFRrGzS2rerQjaFiEIUB8JidkJN_6JsbfRe_qwomeZFJLiMEG0h7F4LHuuq9XSv_FZuqH_lVlF_9yK9-5cfI8SZiEfEPzyErMhDiG-Itf8Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>917295727</pqid></control><display><type>article</type><title>A Hierarchical Model Incorporating Segmented Regions and Pixel Descriptors for Video Background Subtraction</title><source>IEEE Electronic Library Online</source><creator>Chen, Shengyong ; Zhang, Jianhua ; Li, Youfu ; Zhang, Jianwei</creator><creatorcontrib>Chen, Shengyong ; Zhang, Jianhua ; Li, Youfu ; Zhang, Jianwei</creatorcontrib><description>Background subtraction is important for detecting moving objects in videos. Currently, there are many approaches to performing background subtraction. However, they usually neglect the fact that the background images consist of different objects whose conditions may change frequently. In this paper, a novel hierarchical background model is proposed based on segmented background images. It first segments the background images into several regions by the mean-shift algorithm. Then, a hierarchical model, which consists of the region models and pixel models, is created. The region model is a kind of approximate Gaussian mixture model extracted from the histogram of a specific region. The pixel model is based on the cooccurrence of image variations described by histograms of oriented gradients of pixels in each region. Benefiting from the background segmentation, the region models and pixel models corresponding to different regions can be set to different parameters. The pixel descriptors are calculated only from neighboring pixels belonging to the same object. The experimental results are carried out with a video database to demonstrate the effectiveness, which is applied to both static and dynamic scenes by comparing it with some well-known background subtraction methods.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2011.2173202</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptation models ; Approximation ; Background subtraction ; Computational modeling ; cooccurrence of image variation ; Gaussian ; hierarchical background model (HBM) ; Histograms ; Image segmentation ; Informatics ; Mathematical models ; pixel model ; Pixels ; region segmentation ; Studies ; Subtraction ; Training</subject><ispartof>IEEE transactions on industrial informatics, 2012-02, Vol.8 (1), p.118-127</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2012</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-cfe2e76c1348d3cd0bde146427622e4540804d1f8dec63537607916e10f92bee3</citedby><cites>FETCH-LOGICAL-c323t-cfe2e76c1348d3cd0bde146427622e4540804d1f8dec63537607916e10f92bee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6059503$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6059503$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Shengyong</creatorcontrib><creatorcontrib>Zhang, Jianhua</creatorcontrib><creatorcontrib>Li, Youfu</creatorcontrib><creatorcontrib>Zhang, Jianwei</creatorcontrib><title>A Hierarchical Model Incorporating Segmented Regions and Pixel Descriptors for Video Background Subtraction</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>Background subtraction is important for detecting moving objects in videos. Currently, there are many approaches to performing background subtraction. However, they usually neglect the fact that the background images consist of different objects whose conditions may change frequently. In this paper, a novel hierarchical background model is proposed based on segmented background images. It first segments the background images into several regions by the mean-shift algorithm. Then, a hierarchical model, which consists of the region models and pixel models, is created. The region model is a kind of approximate Gaussian mixture model extracted from the histogram of a specific region. The pixel model is based on the cooccurrence of image variations described by histograms of oriented gradients of pixels in each region. Benefiting from the background segmentation, the region models and pixel models corresponding to different regions can be set to different parameters. The pixel descriptors are calculated only from neighboring pixels belonging to the same object. The experimental results are carried out with a video database to demonstrate the effectiveness, which is applied to both static and dynamic scenes by comparing it with some well-known background subtraction methods.</description><subject>Adaptation models</subject><subject>Approximation</subject><subject>Background subtraction</subject><subject>Computational modeling</subject><subject>cooccurrence of image variation</subject><subject>Gaussian</subject><subject>hierarchical background model (HBM)</subject><subject>Histograms</subject><subject>Image segmentation</subject><subject>Informatics</subject><subject>Mathematical models</subject><subject>pixel model</subject><subject>Pixels</subject><subject>region segmentation</subject><subject>Studies</subject><subject>Subtraction</subject><subject>Training</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1LxDAQhoMoqKt3wUvw5KXrJGmb7VHXjy2sKH5dSzaZ1mi3qUkL-u-NrHjwNMPwvC_DQ8gRgyljUJw9leWUA2NTzqTgwLfIHitSlgBksB33LGNJvItdsh_CG4CQIIo98n5OFxa98vrVatXSW2ewpWWnne-dV4PtGvqIzRq7AQ19wMa6LlDVGXpvPyN5iUF72w_OB1o7T1-sQUcvlH5vvBsj9jiuBq_0EHMHZKdWbcDD3zkhz9dXT_NFsry7Kefny0QLLoZE18hR5pqJdGaENrAyyNI85TLnHNMshRmkhtUzgzoXmZA5yILlyKAu-ApRTMjpprf37mPEMFRrGzS2rerQjaFiEIUB8JidkJN_6JsbfRe_qwomeZFJLiMEG0h7F4LHuuq9XSv_FZuqH_lVlF_9yK9-5cfI8SZiEfEPzyErMhDiG-Itf8Y</recordid><startdate>201202</startdate><enddate>201202</enddate><creator>Chen, Shengyong</creator><creator>Zhang, Jianhua</creator><creator>Li, Youfu</creator><creator>Zhang, Jianwei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201202</creationdate><title>A Hierarchical Model Incorporating Segmented Regions and Pixel Descriptors for Video Background Subtraction</title><author>Chen, Shengyong ; Zhang, Jianhua ; Li, Youfu ; Zhang, Jianwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-cfe2e76c1348d3cd0bde146427622e4540804d1f8dec63537607916e10f92bee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Adaptation models</topic><topic>Approximation</topic><topic>Background subtraction</topic><topic>Computational modeling</topic><topic>cooccurrence of image variation</topic><topic>Gaussian</topic><topic>hierarchical background model (HBM)</topic><topic>Histograms</topic><topic>Image segmentation</topic><topic>Informatics</topic><topic>Mathematical models</topic><topic>pixel model</topic><topic>Pixels</topic><topic>region segmentation</topic><topic>Studies</topic><topic>Subtraction</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Chen, Shengyong</creatorcontrib><creatorcontrib>Zhang, Jianhua</creatorcontrib><creatorcontrib>Li, Youfu</creatorcontrib><creatorcontrib>Zhang, Jianwei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Shengyong</au><au>Zhang, Jianhua</au><au>Li, Youfu</au><au>Zhang, Jianwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Hierarchical Model Incorporating Segmented Regions and Pixel Descriptors for Video Background Subtraction</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2012-02</date><risdate>2012</risdate><volume>8</volume><issue>1</issue><spage>118</spage><epage>127</epage><pages>118-127</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>Background subtraction is important for detecting moving objects in videos. Currently, there are many approaches to performing background subtraction. However, they usually neglect the fact that the background images consist of different objects whose conditions may change frequently. In this paper, a novel hierarchical background model is proposed based on segmented background images. It first segments the background images into several regions by the mean-shift algorithm. Then, a hierarchical model, which consists of the region models and pixel models, is created. The region model is a kind of approximate Gaussian mixture model extracted from the histogram of a specific region. The pixel model is based on the cooccurrence of image variations described by histograms of oriented gradients of pixels in each region. Benefiting from the background segmentation, the region models and pixel models corresponding to different regions can be set to different parameters. The pixel descriptors are calculated only from neighboring pixels belonging to the same object. The experimental results are carried out with a video database to demonstrate the effectiveness, which is applied to both static and dynamic scenes by comparing it with some well-known background subtraction methods.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2011.2173202</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1551-3203
ispartof IEEE transactions on industrial informatics, 2012-02, Vol.8 (1), p.118-127
issn 1551-3203
1941-0050
language eng
recordid cdi_proquest_miscellaneous_1010900235
source IEEE Electronic Library Online
subjects Adaptation models
Approximation
Background subtraction
Computational modeling
cooccurrence of image variation
Gaussian
hierarchical background model (HBM)
Histograms
Image segmentation
Informatics
Mathematical models
pixel model
Pixels
region segmentation
Studies
Subtraction
Training
title A Hierarchical Model Incorporating Segmented Regions and Pixel Descriptors for Video Background Subtraction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T18%3A21%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Hierarchical%20Model%20Incorporating%20Segmented%20Regions%20and%20Pixel%20Descriptors%20for%20Video%20Background%20Subtraction&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Chen,%20Shengyong&rft.date=2012-02&rft.volume=8&rft.issue=1&rft.spage=118&rft.epage=127&rft.pages=118-127&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2011.2173202&rft_dat=%3Cproquest_RIE%3E2568143461%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=917295727&rft_id=info:pmid/&rft_ieee_id=6059503&rfr_iscdi=true