On the film thickness dependence of shear strengths in sliding, boundary-layer friction

► Uses first-principle quantum calculations in the form of density functional theory (DFT) to compute the pressure-dependent shear strength of a model KCl tribofilm. ► Shows that first principles quantum theory can reproduce the experimentally measure value of the zero-pressure limit of shear streng...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wear 2012-01, Vol.274-275, p.281-285
Hauptverfasser: Garvey, Michael, Weinert, Michael, Tysoe, Wilfred T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 285
container_issue
container_start_page 281
container_title Wear
container_volume 274-275
creator Garvey, Michael
Weinert, Michael
Tysoe, Wilfred T.
description ► Uses first-principle quantum calculations in the form of density functional theory (DFT) to compute the pressure-dependent shear strength of a model KCl tribofilm. ► Shows that first principles quantum theory can reproduce the experimentally measure value of the zero-pressure limit of shear strength. ► Analyses the origin of pressure-dependent shear strengths in boundary lubrication. ► Demonstrates that the difference between the experimental and theoretical values of the proportionality constant between shear strength and pressure cannot be accounted for by differences in film thickness. The density functional theory calculated pressure-dependent shear strength S of a four-layer slab of KCl on a Fe(100) substrate is compared to previous calculations for a bilayer slab to gauge the effect of film thickness on the shear properties of the film. It is found that the shear strength varies with pressure as S=S0+αP, where P is the contact pressure. The resulting calculated values for the four-layer slab are S0〈10〉=62±15 and S0〈11〉=65±11MPa while α〈10〉 and α〈11〉 are 0.06±0.01. The values are very close to those calculated for the bilayer slab of S0〈10〉=64±9 and S0〈11〉=69±8MPa and α〈10〉 and α〈11〉 of 0.05±0.01, and in reasonable agreement with the experiment values. These results suggest that the thickness of the film does not have a profound effect on the shear properties.
doi_str_mv 10.1016/j.wear.2011.09.008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1010896787</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0043164811005904</els_id><sourcerecordid>1010896787</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-a1bbbf2239e1e8d345fb1cd1ed651af4bdde63939b7275eb8f121d24043c55653</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFMuggd3TbKb_QAvIn6B4EXxGLLJpE3dZmtmq_Tfm9Li0dPM4Zl3Zh5CzjnLOePV9SL_AR1zwTjPWZsz1hyQCW_qIhOyrg_JhLGyyHhVNsfkBHHBGOOtrCbk4zXQcQ7U-X6ZGm8-AyBSCysIFoIBOjiK8xROcYwQZuMcqQ8Ue299mF3RblgHq-Mm6_UGInXRm9EP4ZQcOd0jnO3rlLw_3L_dPWUvr4_Pd7cvmSlFO2aad13nhCha4NDYopSu48ZysJXk2pWdtVAVbdF2tagldI3jgltRpm-MlJUspuRyl7uKw9cacFRLjwb6XgcY1qiSHda0VZ1UTInYoSYOiBGcWkW_TKcnaMtVaqG2FtXWomKtShbT0MU-X6PRvYs6GI9_k0JKVoumTNzNjoP07LeHqND4rT_rI5hR2cH_t-YXHUOJAA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1010896787</pqid></control><display><type>article</type><title>On the film thickness dependence of shear strengths in sliding, boundary-layer friction</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Garvey, Michael ; Weinert, Michael ; Tysoe, Wilfred T.</creator><creatorcontrib>Garvey, Michael ; Weinert, Michael ; Tysoe, Wilfred T.</creatorcontrib><description>► Uses first-principle quantum calculations in the form of density functional theory (DFT) to compute the pressure-dependent shear strength of a model KCl tribofilm. ► Shows that first principles quantum theory can reproduce the experimentally measure value of the zero-pressure limit of shear strength. ► Analyses the origin of pressure-dependent shear strengths in boundary lubrication. ► Demonstrates that the difference between the experimental and theoretical values of the proportionality constant between shear strength and pressure cannot be accounted for by differences in film thickness. The density functional theory calculated pressure-dependent shear strength S of a four-layer slab of KCl on a Fe(100) substrate is compared to previous calculations for a bilayer slab to gauge the effect of film thickness on the shear properties of the film. It is found that the shear strength varies with pressure as S=S0+αP, where P is the contact pressure. The resulting calculated values for the four-layer slab are S0〈10〉=62±15 and S0〈11〉=65±11MPa while α〈10〉 and α〈11〉 are 0.06±0.01. The values are very close to those calculated for the bilayer slab of S0〈10〉=64±9 and S0〈11〉=69±8MPa and α〈10〉 and α〈11〉 of 0.05±0.01, and in reasonable agreement with the experiment values. These results suggest that the thickness of the film does not have a profound effect on the shear properties.</description><identifier>ISSN: 0043-1648</identifier><identifier>EISSN: 1873-2577</identifier><identifier>DOI: 10.1016/j.wear.2011.09.008</identifier><identifier>CODEN: WEARAH</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Boundaries ; Density functional theory ; Exact sciences and technology ; Film thickness ; Friction ; Friction, wear, lubrication ; Iron ; Machine components ; Mathematical analysis ; Mechanical engineering. Machine design ; Potassium chloride ; Pressure dependence ; Shear properties ; Shear strength ; Slabs ; Thickness dependence</subject><ispartof>Wear, 2012-01, Vol.274-275, p.281-285</ispartof><rights>2011 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-a1bbbf2239e1e8d345fb1cd1ed651af4bdde63939b7275eb8f121d24043c55653</citedby><cites>FETCH-LOGICAL-c429t-a1bbbf2239e1e8d345fb1cd1ed651af4bdde63939b7275eb8f121d24043c55653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0043164811005904$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25507284$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Garvey, Michael</creatorcontrib><creatorcontrib>Weinert, Michael</creatorcontrib><creatorcontrib>Tysoe, Wilfred T.</creatorcontrib><title>On the film thickness dependence of shear strengths in sliding, boundary-layer friction</title><title>Wear</title><description>► Uses first-principle quantum calculations in the form of density functional theory (DFT) to compute the pressure-dependent shear strength of a model KCl tribofilm. ► Shows that first principles quantum theory can reproduce the experimentally measure value of the zero-pressure limit of shear strength. ► Analyses the origin of pressure-dependent shear strengths in boundary lubrication. ► Demonstrates that the difference between the experimental and theoretical values of the proportionality constant between shear strength and pressure cannot be accounted for by differences in film thickness. The density functional theory calculated pressure-dependent shear strength S of a four-layer slab of KCl on a Fe(100) substrate is compared to previous calculations for a bilayer slab to gauge the effect of film thickness on the shear properties of the film. It is found that the shear strength varies with pressure as S=S0+αP, where P is the contact pressure. The resulting calculated values for the four-layer slab are S0〈10〉=62±15 and S0〈11〉=65±11MPa while α〈10〉 and α〈11〉 are 0.06±0.01. The values are very close to those calculated for the bilayer slab of S0〈10〉=64±9 and S0〈11〉=69±8MPa and α〈10〉 and α〈11〉 of 0.05±0.01, and in reasonable agreement with the experiment values. These results suggest that the thickness of the film does not have a profound effect on the shear properties.</description><subject>Applied sciences</subject><subject>Boundaries</subject><subject>Density functional theory</subject><subject>Exact sciences and technology</subject><subject>Film thickness</subject><subject>Friction</subject><subject>Friction, wear, lubrication</subject><subject>Iron</subject><subject>Machine components</subject><subject>Mathematical analysis</subject><subject>Mechanical engineering. Machine design</subject><subject>Potassium chloride</subject><subject>Pressure dependence</subject><subject>Shear properties</subject><subject>Shear strength</subject><subject>Slabs</subject><subject>Thickness dependence</subject><issn>0043-1648</issn><issn>1873-2577</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wFMuggd3TbKb_QAvIn6B4EXxGLLJpE3dZmtmq_Tfm9Li0dPM4Zl3Zh5CzjnLOePV9SL_AR1zwTjPWZsz1hyQCW_qIhOyrg_JhLGyyHhVNsfkBHHBGOOtrCbk4zXQcQ7U-X6ZGm8-AyBSCysIFoIBOjiK8xROcYwQZuMcqQ8Ue299mF3RblgHq-Mm6_UGInXRm9EP4ZQcOd0jnO3rlLw_3L_dPWUvr4_Pd7cvmSlFO2aad13nhCha4NDYopSu48ZysJXk2pWdtVAVbdF2tagldI3jgltRpm-MlJUspuRyl7uKw9cacFRLjwb6XgcY1qiSHda0VZ1UTInYoSYOiBGcWkW_TKcnaMtVaqG2FtXWomKtShbT0MU-X6PRvYs6GI9_k0JKVoumTNzNjoP07LeHqND4rT_rI5hR2cH_t-YXHUOJAA</recordid><startdate>20120127</startdate><enddate>20120127</enddate><creator>Garvey, Michael</creator><creator>Weinert, Michael</creator><creator>Tysoe, Wilfred T.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20120127</creationdate><title>On the film thickness dependence of shear strengths in sliding, boundary-layer friction</title><author>Garvey, Michael ; Weinert, Michael ; Tysoe, Wilfred T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-a1bbbf2239e1e8d345fb1cd1ed651af4bdde63939b7275eb8f121d24043c55653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Boundaries</topic><topic>Density functional theory</topic><topic>Exact sciences and technology</topic><topic>Film thickness</topic><topic>Friction</topic><topic>Friction, wear, lubrication</topic><topic>Iron</topic><topic>Machine components</topic><topic>Mathematical analysis</topic><topic>Mechanical engineering. Machine design</topic><topic>Potassium chloride</topic><topic>Pressure dependence</topic><topic>Shear properties</topic><topic>Shear strength</topic><topic>Slabs</topic><topic>Thickness dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garvey, Michael</creatorcontrib><creatorcontrib>Weinert, Michael</creatorcontrib><creatorcontrib>Tysoe, Wilfred T.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Wear</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garvey, Michael</au><au>Weinert, Michael</au><au>Tysoe, Wilfred T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the film thickness dependence of shear strengths in sliding, boundary-layer friction</atitle><jtitle>Wear</jtitle><date>2012-01-27</date><risdate>2012</risdate><volume>274-275</volume><spage>281</spage><epage>285</epage><pages>281-285</pages><issn>0043-1648</issn><eissn>1873-2577</eissn><coden>WEARAH</coden><abstract>► Uses first-principle quantum calculations in the form of density functional theory (DFT) to compute the pressure-dependent shear strength of a model KCl tribofilm. ► Shows that first principles quantum theory can reproduce the experimentally measure value of the zero-pressure limit of shear strength. ► Analyses the origin of pressure-dependent shear strengths in boundary lubrication. ► Demonstrates that the difference between the experimental and theoretical values of the proportionality constant between shear strength and pressure cannot be accounted for by differences in film thickness. The density functional theory calculated pressure-dependent shear strength S of a four-layer slab of KCl on a Fe(100) substrate is compared to previous calculations for a bilayer slab to gauge the effect of film thickness on the shear properties of the film. It is found that the shear strength varies with pressure as S=S0+αP, where P is the contact pressure. The resulting calculated values for the four-layer slab are S0〈10〉=62±15 and S0〈11〉=65±11MPa while α〈10〉 and α〈11〉 are 0.06±0.01. The values are very close to those calculated for the bilayer slab of S0〈10〉=64±9 and S0〈11〉=69±8MPa and α〈10〉 and α〈11〉 of 0.05±0.01, and in reasonable agreement with the experiment values. These results suggest that the thickness of the film does not have a profound effect on the shear properties.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.wear.2011.09.008</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0043-1648
ispartof Wear, 2012-01, Vol.274-275, p.281-285
issn 0043-1648
1873-2577
language eng
recordid cdi_proquest_miscellaneous_1010896787
source ScienceDirect Journals (5 years ago - present)
subjects Applied sciences
Boundaries
Density functional theory
Exact sciences and technology
Film thickness
Friction
Friction, wear, lubrication
Iron
Machine components
Mathematical analysis
Mechanical engineering. Machine design
Potassium chloride
Pressure dependence
Shear properties
Shear strength
Slabs
Thickness dependence
title On the film thickness dependence of shear strengths in sliding, boundary-layer friction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T20%3A57%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20film%20thickness%20dependence%20of%20shear%20strengths%20in%20sliding,%20boundary-layer%20friction&rft.jtitle=Wear&rft.au=Garvey,%20Michael&rft.date=2012-01-27&rft.volume=274-275&rft.spage=281&rft.epage=285&rft.pages=281-285&rft.issn=0043-1648&rft.eissn=1873-2577&rft.coden=WEARAH&rft_id=info:doi/10.1016/j.wear.2011.09.008&rft_dat=%3Cproquest_cross%3E1010896787%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1010896787&rft_id=info:pmid/&rft_els_id=S0043164811005904&rfr_iscdi=true