Product analysis of the ethanol oxidation reaction on palladium-based catalysts in an anion-exchange membrane fuel cell environment

We report a quantitative product analysis of the oxidation of ethanol in an anion-exchange membrane direct ethanol fuel cell (AEM DEFC) that consists of a Pd/C (or Pd 2Ni 3/C) anode, an AEM, and a Fe–Co cathode. The effects of the operating conditions including temperature, discharging current densi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of hydrogen energy 2012, Vol.37 (1), p.575-582
Hauptverfasser: Shen, S.Y., Zhao, T.S., Wu, Q.X.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 582
container_issue 1
container_start_page 575
container_title International journal of hydrogen energy
container_volume 37
creator Shen, S.Y.
Zhao, T.S.
Wu, Q.X.
description We report a quantitative product analysis of the oxidation of ethanol in an anion-exchange membrane direct ethanol fuel cell (AEM DEFC) that consists of a Pd/C (or Pd 2Ni 3/C) anode, an AEM, and a Fe–Co cathode. The effects of the operating conditions including temperature, discharging current density, and fuel concentration, on the selectivity of each product of ethanol oxidation are investigated. It is found that incomplete ethanol oxidation to acetate prevails over complete oxidation to CO 2 in the range of testing conditions. Experimental results show that the change in the anode catalyst from Pd/C to Pd 2Ni 3/C leads to a significant increase in the cell performance, but does not help improve the CO 2 selectivity of ethanol oxidation. It is also shown that among the operating conditions tested, the operating temperature is the most significant parameter that affects the CO 2 selectivity: increasing the temperature from 60 to 100 °C enables the CO 2 current efficiency to increase from 6.0% to 30.6% with the Pd/C anode. ► Incomplete ethanol oxidation to acetate prevails over complete oxidation to CO 2 in the range of testing conditions. ► Among the operating conditions tested, the operating temperature is the most significant parameter that affects the CO 2 selectivity. ► Increasing the temperature from 60 to 100 °C enables the CO 2 current efficiency to increase from 6.0% to 30.6%.
doi_str_mv 10.1016/j.ijhydene.2011.09.077
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1010891402</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360319911021902</els_id><sourcerecordid>1010891402</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-80fd3707a424e6e1428adbfc04088b5ce8998e4ff794808f3bac39aea1f06dea3</originalsourceid><addsrcrecordid>eNqFkE-LFDEQxRtRcFz9CpKL4KXbSnemO7kpi_9gQQ96DjVJxcnQnYxJetk5-8XNOOteFwqqDr_3quo1zWsOHQc-vjt0_rA_WQrU9cB5B6qDaXrSbLicVDsIOT1tNjCM0A5cqefNi5wPAHwCoTbNn-8p2tUUhgHnU_aZRcfKnhiVPYY4s3jnLRYfA0uE5t9Q64jzjNavS7vDTJYZLGd5ycyHalWrgi3dmWryi9hCyy5hIOZWmpmheWYUbn2KYaFQXjbPHM6ZXt33q-bnp48_rr-0N98-f73-cNOaYdqWVoKzwwQTil7QSFz0Eu3OGRAg5W5rSColSTg3KSFBumGHZlBIyB2MlnC4at5efI8p_l4pF734fD6mXhbXrGuaIBUX0Fd0vKAmxZwTOX1MfsF0qtCZG_VB_09dn1PXoHRNvQrf3O_AbHB29Wvj84O63wo-wJZX7v2Fo_rwraeks_EUDFmfyBRto39s1V9NW587</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1010891402</pqid></control><display><type>article</type><title>Product analysis of the ethanol oxidation reaction on palladium-based catalysts in an anion-exchange membrane fuel cell environment</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Shen, S.Y. ; Zhao, T.S. ; Wu, Q.X.</creator><creatorcontrib>Shen, S.Y. ; Zhao, T.S. ; Wu, Q.X.</creatorcontrib><description>We report a quantitative product analysis of the oxidation of ethanol in an anion-exchange membrane direct ethanol fuel cell (AEM DEFC) that consists of a Pd/C (or Pd 2Ni 3/C) anode, an AEM, and a Fe–Co cathode. The effects of the operating conditions including temperature, discharging current density, and fuel concentration, on the selectivity of each product of ethanol oxidation are investigated. It is found that incomplete ethanol oxidation to acetate prevails over complete oxidation to CO 2 in the range of testing conditions. Experimental results show that the change in the anode catalyst from Pd/C to Pd 2Ni 3/C leads to a significant increase in the cell performance, but does not help improve the CO 2 selectivity of ethanol oxidation. It is also shown that among the operating conditions tested, the operating temperature is the most significant parameter that affects the CO 2 selectivity: increasing the temperature from 60 to 100 °C enables the CO 2 current efficiency to increase from 6.0% to 30.6% with the Pd/C anode. ► Incomplete ethanol oxidation to acetate prevails over complete oxidation to CO 2 in the range of testing conditions. ► Among the operating conditions tested, the operating temperature is the most significant parameter that affects the CO 2 selectivity. ► Increasing the temperature from 60 to 100 °C enables the CO 2 current efficiency to increase from 6.0% to 30.6%.</description><identifier>ISSN: 0360-3199</identifier><identifier>EISSN: 1879-3487</identifier><identifier>DOI: 10.1016/j.ijhydene.2011.09.077</identifier><identifier>CODEN: IJHEDX</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Alcohols: methanol, ethanol, etc ; Alternative fuels. Production and utilization ; Anion-exchange membrane fuel cell ; Applied sciences ; Catalysis ; Chemistry ; CO 2 current efficiency ; Energy ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Ethanol oxidation reaction ; Exact sciences and technology ; Fuel cell ; Fuel cells ; Fuels ; General and physical chemistry ; Product analysis ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><ispartof>International journal of hydrogen energy, 2012, Vol.37 (1), p.575-582</ispartof><rights>2011 Hydrogen Energy Publications, LLC.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-80fd3707a424e6e1428adbfc04088b5ce8998e4ff794808f3bac39aea1f06dea3</citedby><cites>FETCH-LOGICAL-c375t-80fd3707a424e6e1428adbfc04088b5ce8998e4ff794808f3bac39aea1f06dea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0360319911021902$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,4010,27900,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25413051$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Shen, S.Y.</creatorcontrib><creatorcontrib>Zhao, T.S.</creatorcontrib><creatorcontrib>Wu, Q.X.</creatorcontrib><title>Product analysis of the ethanol oxidation reaction on palladium-based catalysts in an anion-exchange membrane fuel cell environment</title><title>International journal of hydrogen energy</title><description>We report a quantitative product analysis of the oxidation of ethanol in an anion-exchange membrane direct ethanol fuel cell (AEM DEFC) that consists of a Pd/C (or Pd 2Ni 3/C) anode, an AEM, and a Fe–Co cathode. The effects of the operating conditions including temperature, discharging current density, and fuel concentration, on the selectivity of each product of ethanol oxidation are investigated. It is found that incomplete ethanol oxidation to acetate prevails over complete oxidation to CO 2 in the range of testing conditions. Experimental results show that the change in the anode catalyst from Pd/C to Pd 2Ni 3/C leads to a significant increase in the cell performance, but does not help improve the CO 2 selectivity of ethanol oxidation. It is also shown that among the operating conditions tested, the operating temperature is the most significant parameter that affects the CO 2 selectivity: increasing the temperature from 60 to 100 °C enables the CO 2 current efficiency to increase from 6.0% to 30.6% with the Pd/C anode. ► Incomplete ethanol oxidation to acetate prevails over complete oxidation to CO 2 in the range of testing conditions. ► Among the operating conditions tested, the operating temperature is the most significant parameter that affects the CO 2 selectivity. ► Increasing the temperature from 60 to 100 °C enables the CO 2 current efficiency to increase from 6.0% to 30.6%.</description><subject>Alcohols: methanol, ethanol, etc</subject><subject>Alternative fuels. Production and utilization</subject><subject>Anion-exchange membrane fuel cell</subject><subject>Applied sciences</subject><subject>Catalysis</subject><subject>Chemistry</subject><subject>CO 2 current efficiency</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Ethanol oxidation reaction</subject><subject>Exact sciences and technology</subject><subject>Fuel cell</subject><subject>Fuel cells</subject><subject>Fuels</subject><subject>General and physical chemistry</subject><subject>Product analysis</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><issn>0360-3199</issn><issn>1879-3487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkE-LFDEQxRtRcFz9CpKL4KXbSnemO7kpi_9gQQ96DjVJxcnQnYxJetk5-8XNOOteFwqqDr_3quo1zWsOHQc-vjt0_rA_WQrU9cB5B6qDaXrSbLicVDsIOT1tNjCM0A5cqefNi5wPAHwCoTbNn-8p2tUUhgHnU_aZRcfKnhiVPYY4s3jnLRYfA0uE5t9Q64jzjNavS7vDTJYZLGd5ycyHalWrgi3dmWryi9hCyy5hIOZWmpmheWYUbn2KYaFQXjbPHM6ZXt33q-bnp48_rr-0N98-f73-cNOaYdqWVoKzwwQTil7QSFz0Eu3OGRAg5W5rSColSTg3KSFBumGHZlBIyB2MlnC4at5efI8p_l4pF734fD6mXhbXrGuaIBUX0Fd0vKAmxZwTOX1MfsF0qtCZG_VB_09dn1PXoHRNvQrf3O_AbHB29Wvj84O63wo-wJZX7v2Fo_rwraeks_EUDFmfyBRto39s1V9NW587</recordid><startdate>2012</startdate><enddate>2012</enddate><creator>Shen, S.Y.</creator><creator>Zhao, T.S.</creator><creator>Wu, Q.X.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SU</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>2012</creationdate><title>Product analysis of the ethanol oxidation reaction on palladium-based catalysts in an anion-exchange membrane fuel cell environment</title><author>Shen, S.Y. ; Zhao, T.S. ; Wu, Q.X.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-80fd3707a424e6e1428adbfc04088b5ce8998e4ff794808f3bac39aea1f06dea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Alcohols: methanol, ethanol, etc</topic><topic>Alternative fuels. Production and utilization</topic><topic>Anion-exchange membrane fuel cell</topic><topic>Applied sciences</topic><topic>Catalysis</topic><topic>Chemistry</topic><topic>CO 2 current efficiency</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Ethanol oxidation reaction</topic><topic>Exact sciences and technology</topic><topic>Fuel cell</topic><topic>Fuel cells</topic><topic>Fuels</topic><topic>General and physical chemistry</topic><topic>Product analysis</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, S.Y.</creatorcontrib><creatorcontrib>Zhao, T.S.</creatorcontrib><creatorcontrib>Wu, Q.X.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of hydrogen energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, S.Y.</au><au>Zhao, T.S.</au><au>Wu, Q.X.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Product analysis of the ethanol oxidation reaction on palladium-based catalysts in an anion-exchange membrane fuel cell environment</atitle><jtitle>International journal of hydrogen energy</jtitle><date>2012</date><risdate>2012</risdate><volume>37</volume><issue>1</issue><spage>575</spage><epage>582</epage><pages>575-582</pages><issn>0360-3199</issn><eissn>1879-3487</eissn><coden>IJHEDX</coden><abstract>We report a quantitative product analysis of the oxidation of ethanol in an anion-exchange membrane direct ethanol fuel cell (AEM DEFC) that consists of a Pd/C (or Pd 2Ni 3/C) anode, an AEM, and a Fe–Co cathode. The effects of the operating conditions including temperature, discharging current density, and fuel concentration, on the selectivity of each product of ethanol oxidation are investigated. It is found that incomplete ethanol oxidation to acetate prevails over complete oxidation to CO 2 in the range of testing conditions. Experimental results show that the change in the anode catalyst from Pd/C to Pd 2Ni 3/C leads to a significant increase in the cell performance, but does not help improve the CO 2 selectivity of ethanol oxidation. It is also shown that among the operating conditions tested, the operating temperature is the most significant parameter that affects the CO 2 selectivity: increasing the temperature from 60 to 100 °C enables the CO 2 current efficiency to increase from 6.0% to 30.6% with the Pd/C anode. ► Incomplete ethanol oxidation to acetate prevails over complete oxidation to CO 2 in the range of testing conditions. ► Among the operating conditions tested, the operating temperature is the most significant parameter that affects the CO 2 selectivity. ► Increasing the temperature from 60 to 100 °C enables the CO 2 current efficiency to increase from 6.0% to 30.6%.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijhydene.2011.09.077</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0360-3199
ispartof International journal of hydrogen energy, 2012, Vol.37 (1), p.575-582
issn 0360-3199
1879-3487
language eng
recordid cdi_proquest_miscellaneous_1010891402
source Elsevier ScienceDirect Journals Complete
subjects Alcohols: methanol, ethanol, etc
Alternative fuels. Production and utilization
Anion-exchange membrane fuel cell
Applied sciences
Catalysis
Chemistry
CO 2 current efficiency
Energy
Energy. Thermal use of fuels
Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc
Ethanol oxidation reaction
Exact sciences and technology
Fuel cell
Fuel cells
Fuels
General and physical chemistry
Product analysis
Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry
title Product analysis of the ethanol oxidation reaction on palladium-based catalysts in an anion-exchange membrane fuel cell environment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A51%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Product%20analysis%20of%20the%20ethanol%20oxidation%20reaction%20on%20palladium-based%20catalysts%20in%20an%20anion-exchange%20membrane%20fuel%20cell%20environment&rft.jtitle=International%20journal%20of%20hydrogen%20energy&rft.au=Shen,%20S.Y.&rft.date=2012&rft.volume=37&rft.issue=1&rft.spage=575&rft.epage=582&rft.pages=575-582&rft.issn=0360-3199&rft.eissn=1879-3487&rft.coden=IJHEDX&rft_id=info:doi/10.1016/j.ijhydene.2011.09.077&rft_dat=%3Cproquest_cross%3E1010891402%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1010891402&rft_id=info:pmid/&rft_els_id=S0360319911021902&rfr_iscdi=true