Design of Adaptive pH Controller Using ANFIS

Conventional control algorithms used in pH control systems give inefficient performance, leading to use of large mixers. To improve the neutralization control process, an ANFIS based advanced controller has been proposed. In this paper, method of design of adaptive controller based on neurofuzzy tec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of computer applications 2011-01, Vol.33 (6)
Hauptverfasser: Navghare, S R, Bodhe, G L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page
container_title International journal of computer applications
container_volume 33
creator Navghare, S R
Bodhe, G L
description Conventional control algorithms used in pH control systems give inefficient performance, leading to use of large mixers. To improve the neutralization control process, an ANFIS based advanced controller has been proposed. In this paper, method of design of adaptive controller based on neurofuzzy technique is presented. The method uses ANFIS methodology to automatically generate fuzzy rule base and fuzzy membership functions, which are iteratively adjusted by hybrid learning algorithm that combine the backpropagation gradient descent and least square method to create a fuzzy inference system. In the modeling task, the dynamics of the process is determined by Takagi-Sugeno fuzzy model in order to obtain a suitable structure for the ANFIS based Neurofuzzy controller. ANFIS is used to identify the twelve linear and sixteen nonlinear parameters that describe the behavior of the pH neutralization process. The resulting neurofuzzy controller is simulated by using reference model. Simulation results proved the tracking and adaptive capability of neurofuzzy system applied to pH neutralization process.
doi_str_mv 10.5120/4027-5741
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1010890879</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1010890879</sourcerecordid><originalsourceid>FETCH-LOGICAL-p609-2cba2c05eadf11e82cc9c1ce89f983956ed1e67596d008e93c6ac7226a0fa63d3</originalsourceid><addsrcrecordid>eNpdjj1PwzAURS0EElXpwD-wmBgIPNvxxxujQGmlCgbKHBnnpUoVkhAn_H4ilQFxl3OHo6vL2LWAey0kPKQgbaJtKs7YAtDqxDlnz__0S7aK8QhzFEqD6YLdPVKsDy3vKp6Vvh_rb-L9huddOw5d09DA32PdHnj2st6-XbGLyjeRVr9csv36aZ9vkt3r8zbPdklvABMZPrwMoMmXlRDkZAgYRCCHFTqF2lApyFiNpgRwhCoYH6yUxkPljSrVkt2eZvuh-5oojsVnHQM1jW-pm2IhQIBDcBZn9eafeuymoZ3PFQgWLFpM1Q-lqU9y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>907079794</pqid></control><display><type>article</type><title>Design of Adaptive pH Controller Using ANFIS</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Navghare, S R ; Bodhe, G L</creator><creatorcontrib>Navghare, S R ; Bodhe, G L</creatorcontrib><description>Conventional control algorithms used in pH control systems give inefficient performance, leading to use of large mixers. To improve the neutralization control process, an ANFIS based advanced controller has been proposed. In this paper, method of design of adaptive controller based on neurofuzzy technique is presented. The method uses ANFIS methodology to automatically generate fuzzy rule base and fuzzy membership functions, which are iteratively adjusted by hybrid learning algorithm that combine the backpropagation gradient descent and least square method to create a fuzzy inference system. In the modeling task, the dynamics of the process is determined by Takagi-Sugeno fuzzy model in order to obtain a suitable structure for the ANFIS based Neurofuzzy controller. ANFIS is used to identify the twelve linear and sixteen nonlinear parameters that describe the behavior of the pH neutralization process. The resulting neurofuzzy controller is simulated by using reference model. Simulation results proved the tracking and adaptive capability of neurofuzzy system applied to pH neutralization process.</description><identifier>ISSN: 0975-8887</identifier><identifier>EISSN: 0975-8887</identifier><identifier>DOI: 10.5120/4027-5741</identifier><language>eng</language><publisher>New York: Foundation of Computer Science</publisher><subject>Adaptive control systems ; Computer simulation ; Fuzzy ; Fuzzy logic ; Fuzzy set theory ; Mathematical models ; Nonlinear dynamics</subject><ispartof>International journal of computer applications, 2011-01, Vol.33 (6)</ispartof><rights>Copyright Foundation of Computer Science 2011</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Navghare, S R</creatorcontrib><creatorcontrib>Bodhe, G L</creatorcontrib><title>Design of Adaptive pH Controller Using ANFIS</title><title>International journal of computer applications</title><description>Conventional control algorithms used in pH control systems give inefficient performance, leading to use of large mixers. To improve the neutralization control process, an ANFIS based advanced controller has been proposed. In this paper, method of design of adaptive controller based on neurofuzzy technique is presented. The method uses ANFIS methodology to automatically generate fuzzy rule base and fuzzy membership functions, which are iteratively adjusted by hybrid learning algorithm that combine the backpropagation gradient descent and least square method to create a fuzzy inference system. In the modeling task, the dynamics of the process is determined by Takagi-Sugeno fuzzy model in order to obtain a suitable structure for the ANFIS based Neurofuzzy controller. ANFIS is used to identify the twelve linear and sixteen nonlinear parameters that describe the behavior of the pH neutralization process. The resulting neurofuzzy controller is simulated by using reference model. Simulation results proved the tracking and adaptive capability of neurofuzzy system applied to pH neutralization process.</description><subject>Adaptive control systems</subject><subject>Computer simulation</subject><subject>Fuzzy</subject><subject>Fuzzy logic</subject><subject>Fuzzy set theory</subject><subject>Mathematical models</subject><subject>Nonlinear dynamics</subject><issn>0975-8887</issn><issn>0975-8887</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpdjj1PwzAURS0EElXpwD-wmBgIPNvxxxujQGmlCgbKHBnnpUoVkhAn_H4ilQFxl3OHo6vL2LWAey0kPKQgbaJtKs7YAtDqxDlnz__0S7aK8QhzFEqD6YLdPVKsDy3vKp6Vvh_rb-L9huddOw5d09DA32PdHnj2st6-XbGLyjeRVr9csv36aZ9vkt3r8zbPdklvABMZPrwMoMmXlRDkZAgYRCCHFTqF2lApyFiNpgRwhCoYH6yUxkPljSrVkt2eZvuh-5oojsVnHQM1jW-pm2IhQIBDcBZn9eafeuymoZ3PFQgWLFpM1Q-lqU9y</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Navghare, S R</creator><creator>Bodhe, G L</creator><general>Foundation of Computer Science</general><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110101</creationdate><title>Design of Adaptive pH Controller Using ANFIS</title><author>Navghare, S R ; Bodhe, G L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p609-2cba2c05eadf11e82cc9c1ce89f983956ed1e67596d008e93c6ac7226a0fa63d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Adaptive control systems</topic><topic>Computer simulation</topic><topic>Fuzzy</topic><topic>Fuzzy logic</topic><topic>Fuzzy set theory</topic><topic>Mathematical models</topic><topic>Nonlinear dynamics</topic><toplevel>online_resources</toplevel><creatorcontrib>Navghare, S R</creatorcontrib><creatorcontrib>Bodhe, G L</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of computer applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Navghare, S R</au><au>Bodhe, G L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of Adaptive pH Controller Using ANFIS</atitle><jtitle>International journal of computer applications</jtitle><date>2011-01-01</date><risdate>2011</risdate><volume>33</volume><issue>6</issue><issn>0975-8887</issn><eissn>0975-8887</eissn><abstract>Conventional control algorithms used in pH control systems give inefficient performance, leading to use of large mixers. To improve the neutralization control process, an ANFIS based advanced controller has been proposed. In this paper, method of design of adaptive controller based on neurofuzzy technique is presented. The method uses ANFIS methodology to automatically generate fuzzy rule base and fuzzy membership functions, which are iteratively adjusted by hybrid learning algorithm that combine the backpropagation gradient descent and least square method to create a fuzzy inference system. In the modeling task, the dynamics of the process is determined by Takagi-Sugeno fuzzy model in order to obtain a suitable structure for the ANFIS based Neurofuzzy controller. ANFIS is used to identify the twelve linear and sixteen nonlinear parameters that describe the behavior of the pH neutralization process. The resulting neurofuzzy controller is simulated by using reference model. Simulation results proved the tracking and adaptive capability of neurofuzzy system applied to pH neutralization process.</abstract><cop>New York</cop><pub>Foundation of Computer Science</pub><doi>10.5120/4027-5741</doi></addata></record>
fulltext fulltext
identifier ISSN: 0975-8887
ispartof International journal of computer applications, 2011-01, Vol.33 (6)
issn 0975-8887
0975-8887
language eng
recordid cdi_proquest_miscellaneous_1010890879
source EZB-FREE-00999 freely available EZB journals
subjects Adaptive control systems
Computer simulation
Fuzzy
Fuzzy logic
Fuzzy set theory
Mathematical models
Nonlinear dynamics
title Design of Adaptive pH Controller Using ANFIS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T03%3A34%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20Adaptive%20pH%20Controller%20Using%20ANFIS&rft.jtitle=International%20journal%20of%20computer%20applications&rft.au=Navghare,%20S%20R&rft.date=2011-01-01&rft.volume=33&rft.issue=6&rft.issn=0975-8887&rft.eissn=0975-8887&rft_id=info:doi/10.5120/4027-5741&rft_dat=%3Cproquest%3E1010890879%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=907079794&rft_id=info:pmid/&rfr_iscdi=true