Lattice-valued convergence spaces: Extending the lattice context
We define a category of stratified L-generalized convergence spaces for the case where the lattice is an enriched cl-premonoid. We then investigate some of its categorical properties and those of its subcategories, in particular the stratified L-principal convergence spaces and the stratified L-topo...
Gespeichert in:
Veröffentlicht in: | Fuzzy sets and systems 2012-03, Vol.190, p.1-20 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Fuzzy sets and systems |
container_volume | 190 |
creator | Orpen, D. Jäger, G. |
description | We define a category of stratified
L-generalized convergence spaces for the case where the lattice is an enriched cl-premonoid. We then investigate some of its categorical properties and those of its subcategories, in particular the stratified
L-principal convergence spaces and the stratified
L-topological convergence spaces. For some results we need to introduce a new condition on the lattice (which is always true in the case where the lattice is a frame, but not always true in the more general case). As examples where we may apply the more general lattice context we examine the stratified
L-topological spaces and probabilistic limit spaces. We show that the category of stratified
L-topological spaces is a reflective subcategory of our category and that the category of probabilistic limit spaces under a T-norm is both a reflective and a coreflective subcategory of our category if we choose the lattice context appropriately.
► We extend lattice-valued convergence spaces to enriched cl-premonoid
L. ► We study the categorical properties of our category and of some of its subcategories. ► The category of stratified
L-topological spaces is a reflective subcategory of our category. ► The category of probabilistic limit spaces under a T-norm is both a reflective and a coreflective subcategory of our category. |
doi_str_mv | 10.1016/j.fss.2011.05.026 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1010889036</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165011411002685</els_id><sourcerecordid>1010889036</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-677db538e09f900a64174e6166f5eac27cc0b1efec4fe486124f9a1d731e73743</originalsourceid><addsrcrecordid>eNp9kD1PwzAQQC0EEqXwA9gysiScY8dOYAGh8iFVYoHZcp1zcZUmxXar8u9xFGYmn-T3TrpHyDWFggIVt5vChlCUQGkBVQGlOCEzWssyFzXQUzJLTJWnX35OLkLYAKRZwIw8LHWMzmB-0N0e28wM_QH9GnuDWdhpg-EuWxwj9q3r11n8wqybhJGMeIyX5MzqLuDV3zsnn8-Lj6fXfPn-8vb0uMwNYxBzIWW7qliN0NgGQAtOJUdBhbAValNKY2BF0aLhFnktaMlto2krGUXJJGdzcjPt3fnhe48hqq0LBrtO9zjsg0oVoK4bYCKhdEKNH0LwaNXOu632PwkaOaE2KtVSYy0FlUq1knM_OZhuODj0Khg3VmidRxNVO7h_7F88NnIB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1010889036</pqid></control><display><type>article</type><title>Lattice-valued convergence spaces: Extending the lattice context</title><source>Elsevier ScienceDirect Journals</source><creator>Orpen, D. ; Jäger, G.</creator><creatorcontrib>Orpen, D. ; Jäger, G.</creatorcontrib><description>We define a category of stratified
L-generalized convergence spaces for the case where the lattice is an enriched cl-premonoid. We then investigate some of its categorical properties and those of its subcategories, in particular the stratified
L-principal convergence spaces and the stratified
L-topological convergence spaces. For some results we need to introduce a new condition on the lattice (which is always true in the case where the lattice is a frame, but not always true in the more general case). As examples where we may apply the more general lattice context we examine the stratified
L-topological spaces and probabilistic limit spaces. We show that the category of stratified
L-topological spaces is a reflective subcategory of our category and that the category of probabilistic limit spaces under a T-norm is both a reflective and a coreflective subcategory of our category if we choose the lattice context appropriately.
► We extend lattice-valued convergence spaces to enriched cl-premonoid
L. ► We study the categorical properties of our category and of some of its subcategories. ► The category of stratified
L-topological spaces is a reflective subcategory of our category. ► The category of probabilistic limit spaces under a T-norm is both a reflective and a coreflective subcategory of our category.</description><identifier>ISSN: 0165-0114</identifier><identifier>EISSN: 1872-6801</identifier><identifier>DOI: 10.1016/j.fss.2011.05.026</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Categories ; Convergence ; Enriched cl-premonoid ; Enrichment ; Frames ; Fuzzy set theory ; L-convergence space ; L-filter ; L-topology ; Lattices ; Probabilistic limit space ; Probabilistic methods ; Probability theory</subject><ispartof>Fuzzy sets and systems, 2012-03, Vol.190, p.1-20</ispartof><rights>2011 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-677db538e09f900a64174e6166f5eac27cc0b1efec4fe486124f9a1d731e73743</citedby><cites>FETCH-LOGICAL-c330t-677db538e09f900a64174e6166f5eac27cc0b1efec4fe486124f9a1d731e73743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0165011411002685$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Orpen, D.</creatorcontrib><creatorcontrib>Jäger, G.</creatorcontrib><title>Lattice-valued convergence spaces: Extending the lattice context</title><title>Fuzzy sets and systems</title><description>We define a category of stratified
L-generalized convergence spaces for the case where the lattice is an enriched cl-premonoid. We then investigate some of its categorical properties and those of its subcategories, in particular the stratified
L-principal convergence spaces and the stratified
L-topological convergence spaces. For some results we need to introduce a new condition on the lattice (which is always true in the case where the lattice is a frame, but not always true in the more general case). As examples where we may apply the more general lattice context we examine the stratified
L-topological spaces and probabilistic limit spaces. We show that the category of stratified
L-topological spaces is a reflective subcategory of our category and that the category of probabilistic limit spaces under a T-norm is both a reflective and a coreflective subcategory of our category if we choose the lattice context appropriately.
► We extend lattice-valued convergence spaces to enriched cl-premonoid
L. ► We study the categorical properties of our category and of some of its subcategories. ► The category of stratified
L-topological spaces is a reflective subcategory of our category. ► The category of probabilistic limit spaces under a T-norm is both a reflective and a coreflective subcategory of our category.</description><subject>Categories</subject><subject>Convergence</subject><subject>Enriched cl-premonoid</subject><subject>Enrichment</subject><subject>Frames</subject><subject>Fuzzy set theory</subject><subject>L-convergence space</subject><subject>L-filter</subject><subject>L-topology</subject><subject>Lattices</subject><subject>Probabilistic limit space</subject><subject>Probabilistic methods</subject><subject>Probability theory</subject><issn>0165-0114</issn><issn>1872-6801</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQQC0EEqXwA9gysiScY8dOYAGh8iFVYoHZcp1zcZUmxXar8u9xFGYmn-T3TrpHyDWFggIVt5vChlCUQGkBVQGlOCEzWssyFzXQUzJLTJWnX35OLkLYAKRZwIw8LHWMzmB-0N0e28wM_QH9GnuDWdhpg-EuWxwj9q3r11n8wqybhJGMeIyX5MzqLuDV3zsnn8-Lj6fXfPn-8vb0uMwNYxBzIWW7qliN0NgGQAtOJUdBhbAValNKY2BF0aLhFnktaMlto2krGUXJJGdzcjPt3fnhe48hqq0LBrtO9zjsg0oVoK4bYCKhdEKNH0LwaNXOu632PwkaOaE2KtVSYy0FlUq1knM_OZhuODj0Khg3VmidRxNVO7h_7F88NnIB</recordid><startdate>20120301</startdate><enddate>20120301</enddate><creator>Orpen, D.</creator><creator>Jäger, G.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20120301</creationdate><title>Lattice-valued convergence spaces: Extending the lattice context</title><author>Orpen, D. ; Jäger, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-677db538e09f900a64174e6166f5eac27cc0b1efec4fe486124f9a1d731e73743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Categories</topic><topic>Convergence</topic><topic>Enriched cl-premonoid</topic><topic>Enrichment</topic><topic>Frames</topic><topic>Fuzzy set theory</topic><topic>L-convergence space</topic><topic>L-filter</topic><topic>L-topology</topic><topic>Lattices</topic><topic>Probabilistic limit space</topic><topic>Probabilistic methods</topic><topic>Probability theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Orpen, D.</creatorcontrib><creatorcontrib>Jäger, G.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Fuzzy sets and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Orpen, D.</au><au>Jäger, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lattice-valued convergence spaces: Extending the lattice context</atitle><jtitle>Fuzzy sets and systems</jtitle><date>2012-03-01</date><risdate>2012</risdate><volume>190</volume><spage>1</spage><epage>20</epage><pages>1-20</pages><issn>0165-0114</issn><eissn>1872-6801</eissn><abstract>We define a category of stratified
L-generalized convergence spaces for the case where the lattice is an enriched cl-premonoid. We then investigate some of its categorical properties and those of its subcategories, in particular the stratified
L-principal convergence spaces and the stratified
L-topological convergence spaces. For some results we need to introduce a new condition on the lattice (which is always true in the case where the lattice is a frame, but not always true in the more general case). As examples where we may apply the more general lattice context we examine the stratified
L-topological spaces and probabilistic limit spaces. We show that the category of stratified
L-topological spaces is a reflective subcategory of our category and that the category of probabilistic limit spaces under a T-norm is both a reflective and a coreflective subcategory of our category if we choose the lattice context appropriately.
► We extend lattice-valued convergence spaces to enriched cl-premonoid
L. ► We study the categorical properties of our category and of some of its subcategories. ► The category of stratified
L-topological spaces is a reflective subcategory of our category. ► The category of probabilistic limit spaces under a T-norm is both a reflective and a coreflective subcategory of our category.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.fss.2011.05.026</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0165-0114 |
ispartof | Fuzzy sets and systems, 2012-03, Vol.190, p.1-20 |
issn | 0165-0114 1872-6801 |
language | eng |
recordid | cdi_proquest_miscellaneous_1010889036 |
source | Elsevier ScienceDirect Journals |
subjects | Categories Convergence Enriched cl-premonoid Enrichment Frames Fuzzy set theory L-convergence space L-filter L-topology Lattices Probabilistic limit space Probabilistic methods Probability theory |
title | Lattice-valued convergence spaces: Extending the lattice context |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T07%3A25%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lattice-valued%20convergence%20spaces:%20Extending%20the%20lattice%20context&rft.jtitle=Fuzzy%20sets%20and%20systems&rft.au=Orpen,%20D.&rft.date=2012-03-01&rft.volume=190&rft.spage=1&rft.epage=20&rft.pages=1-20&rft.issn=0165-0114&rft.eissn=1872-6801&rft_id=info:doi/10.1016/j.fss.2011.05.026&rft_dat=%3Cproquest_cross%3E1010889036%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1010889036&rft_id=info:pmid/&rft_els_id=S0165011411002685&rfr_iscdi=true |