Existence of a second island of stability of predictor–corrector schemes for calculating synthetic seismograms

SUMMARY As the first step towards a general analysis of the stability of optimally accurate predictor–corrector (P–C) time domain discretized schemes for solving the elastic equation of motion, we analyze the stability of two P–C schemes for a 1‐D homogeneous case. Letting Δt be the time step, h be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical journal international 2012-01, Vol.188 (1), p.253-262
Hauptverfasser: Geller, Robert J., Mizutani, Hiromitsu, Hirabayashi, Nobuyasu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 262
container_issue 1
container_start_page 253
container_title Geophysical journal international
container_volume 188
creator Geller, Robert J.
Mizutani, Hiromitsu
Hirabayashi, Nobuyasu
description SUMMARY As the first step towards a general analysis of the stability of optimally accurate predictor–corrector (P–C) time domain discretized schemes for solving the elastic equation of motion, we analyze the stability of two P–C schemes for a 1‐D homogeneous case. Letting Δt be the time step, h be the spatial grid interval, β be the velocity of seismic wave propagation and be the dimensionless Courant parameter, we find that each scheme has the following stability properties: stability for , instability for , stability for and instability for , where . We refer to the region as the second island of stability. The values of , and are scheme‐dependent. The existence of a second island of stability in a numerical scheme for solving the wave equation has not, to our knowledge, been previously reported.
doi_str_mv 10.1111/j.1365-246X.2011.05251.x
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_1010884452</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1010884452</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3861-9f21f8a498766e80c4cc662de898f7fd027add873e87db33885209c8b259eeeb3</originalsourceid><addsrcrecordid>eNo9kE1OwzAQhS0EEqVwhyzZJNiO7TgLFqgqpagSG5C6sxxn0rrKT7FT0ey4AzfkJDgUMZt5M_P0pPkQighOSKi7XUJSwWPKxDqhmJAEc8pJcjxDk__DOZrgnIuYM7y-RFfe7zAmjDA5Qfv50foeWgNRV0U68mC6toysr3VoYeV7Xdja9sM47B2U1vSd-_78Mp1zMOrImy004KMqaKNrc6h1b9tN5Ie230JvTUi1vuk2Tjf-Gl1UuvZw89en6O1x_jp7ilcvi-XsYRXrVAoS5xUlldQsl5kQILFhxghBS5C5rLKqxDTTZSmzFGRWFmkqJac4N7KgPAeAIp2i21Pu3nXvB_C9aqw3UIe_oDt4RTDBUjLGabDen6wftoZB7Z1ttBuCQ42E1U6NINUIUo2E1S9hdVSL5-Wo0h-LrXVq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1010884452</pqid></control><display><type>article</type><title>Existence of a second island of stability of predictor–corrector schemes for calculating synthetic seismograms</title><source>Oxford Journals Open Access Collection</source><source>Wiley Online Library All Journals</source><creator>Geller, Robert J. ; Mizutani, Hiromitsu ; Hirabayashi, Nobuyasu</creator><creatorcontrib>Geller, Robert J. ; Mizutani, Hiromitsu ; Hirabayashi, Nobuyasu</creatorcontrib><description>SUMMARY As the first step towards a general analysis of the stability of optimally accurate predictor–corrector (P–C) time domain discretized schemes for solving the elastic equation of motion, we analyze the stability of two P–C schemes for a 1‐D homogeneous case. Letting Δt be the time step, h be the spatial grid interval, β be the velocity of seismic wave propagation and be the dimensionless Courant parameter, we find that each scheme has the following stability properties: stability for , instability for , stability for and instability for , where . We refer to the region as the second island of stability. The values of , and are scheme‐dependent. The existence of a second island of stability in a numerical scheme for solving the wave equation has not, to our knowledge, been previously reported.</description><identifier>ISSN: 0956-540X</identifier><identifier>EISSN: 1365-246X</identifier><identifier>DOI: 10.1111/j.1365-246X.2011.05251.x</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Computational seismology ; Equations of motion ; Instability ; Islands ; Numerical approximations and analysis ; Numerical solutions ; Predictor-corrector methods ; Seismograms ; Stability ; Wave propagation</subject><ispartof>Geophysical journal international, 2012-01, Vol.188 (1), p.253-262</ispartof><rights>2011 The Authors Geophysical Journal International © 2011 RAS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3861-9f21f8a498766e80c4cc662de898f7fd027add873e87db33885209c8b259eeeb3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-246X.2011.05251.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-246X.2011.05251.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Geller, Robert J.</creatorcontrib><creatorcontrib>Mizutani, Hiromitsu</creatorcontrib><creatorcontrib>Hirabayashi, Nobuyasu</creatorcontrib><title>Existence of a second island of stability of predictor–corrector schemes for calculating synthetic seismograms</title><title>Geophysical journal international</title><description>SUMMARY As the first step towards a general analysis of the stability of optimally accurate predictor–corrector (P–C) time domain discretized schemes for solving the elastic equation of motion, we analyze the stability of two P–C schemes for a 1‐D homogeneous case. Letting Δt be the time step, h be the spatial grid interval, β be the velocity of seismic wave propagation and be the dimensionless Courant parameter, we find that each scheme has the following stability properties: stability for , instability for , stability for and instability for , where . We refer to the region as the second island of stability. The values of , and are scheme‐dependent. The existence of a second island of stability in a numerical scheme for solving the wave equation has not, to our knowledge, been previously reported.</description><subject>Computational seismology</subject><subject>Equations of motion</subject><subject>Instability</subject><subject>Islands</subject><subject>Numerical approximations and analysis</subject><subject>Numerical solutions</subject><subject>Predictor-corrector methods</subject><subject>Seismograms</subject><subject>Stability</subject><subject>Wave propagation</subject><issn>0956-540X</issn><issn>1365-246X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNo9kE1OwzAQhS0EEqVwhyzZJNiO7TgLFqgqpagSG5C6sxxn0rrKT7FT0ey4AzfkJDgUMZt5M_P0pPkQighOSKi7XUJSwWPKxDqhmJAEc8pJcjxDk__DOZrgnIuYM7y-RFfe7zAmjDA5Qfv50foeWgNRV0U68mC6toysr3VoYeV7Xdja9sM47B2U1vSd-_78Mp1zMOrImy004KMqaKNrc6h1b9tN5Ie230JvTUi1vuk2Tjf-Gl1UuvZw89en6O1x_jp7ilcvi-XsYRXrVAoS5xUlldQsl5kQILFhxghBS5C5rLKqxDTTZSmzFGRWFmkqJac4N7KgPAeAIp2i21Pu3nXvB_C9aqw3UIe_oDt4RTDBUjLGabDen6wftoZB7Z1ttBuCQ42E1U6NINUIUo2E1S9hdVSL5-Wo0h-LrXVq</recordid><startdate>201201</startdate><enddate>201201</enddate><creator>Geller, Robert J.</creator><creator>Mizutani, Hiromitsu</creator><creator>Hirabayashi, Nobuyasu</creator><general>Blackwell Publishing Ltd</general><scope>7SM</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>201201</creationdate><title>Existence of a second island of stability of predictor–corrector schemes for calculating synthetic seismograms</title><author>Geller, Robert J. ; Mizutani, Hiromitsu ; Hirabayashi, Nobuyasu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3861-9f21f8a498766e80c4cc662de898f7fd027add873e87db33885209c8b259eeeb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Computational seismology</topic><topic>Equations of motion</topic><topic>Instability</topic><topic>Islands</topic><topic>Numerical approximations and analysis</topic><topic>Numerical solutions</topic><topic>Predictor-corrector methods</topic><topic>Seismograms</topic><topic>Stability</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Geller, Robert J.</creatorcontrib><creatorcontrib>Mizutani, Hiromitsu</creatorcontrib><creatorcontrib>Hirabayashi, Nobuyasu</creatorcontrib><collection>Earthquake Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Geophysical journal international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Geller, Robert J.</au><au>Mizutani, Hiromitsu</au><au>Hirabayashi, Nobuyasu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Existence of a second island of stability of predictor–corrector schemes for calculating synthetic seismograms</atitle><jtitle>Geophysical journal international</jtitle><date>2012-01</date><risdate>2012</risdate><volume>188</volume><issue>1</issue><spage>253</spage><epage>262</epage><pages>253-262</pages><issn>0956-540X</issn><eissn>1365-246X</eissn><abstract>SUMMARY As the first step towards a general analysis of the stability of optimally accurate predictor–corrector (P–C) time domain discretized schemes for solving the elastic equation of motion, we analyze the stability of two P–C schemes for a 1‐D homogeneous case. Letting Δt be the time step, h be the spatial grid interval, β be the velocity of seismic wave propagation and be the dimensionless Courant parameter, we find that each scheme has the following stability properties: stability for , instability for , stability for and instability for , where . We refer to the region as the second island of stability. The values of , and are scheme‐dependent. The existence of a second island of stability in a numerical scheme for solving the wave equation has not, to our knowledge, been previously reported.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1365-246X.2011.05251.x</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0956-540X
ispartof Geophysical journal international, 2012-01, Vol.188 (1), p.253-262
issn 0956-540X
1365-246X
language eng
recordid cdi_proquest_miscellaneous_1010884452
source Oxford Journals Open Access Collection; Wiley Online Library All Journals
subjects Computational seismology
Equations of motion
Instability
Islands
Numerical approximations and analysis
Numerical solutions
Predictor-corrector methods
Seismograms
Stability
Wave propagation
title Existence of a second island of stability of predictor–corrector schemes for calculating synthetic seismograms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T13%3A35%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Existence%20of%20a%20second%20island%20of%20stability%20of%20predictor%E2%80%93corrector%20schemes%20for%20calculating%20synthetic%20seismograms&rft.jtitle=Geophysical%20journal%20international&rft.au=Geller,%20Robert%20J.&rft.date=2012-01&rft.volume=188&rft.issue=1&rft.spage=253&rft.epage=262&rft.pages=253-262&rft.issn=0956-540X&rft.eissn=1365-246X&rft_id=info:doi/10.1111/j.1365-246X.2011.05251.x&rft_dat=%3Cproquest_wiley%3E1010884452%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1010884452&rft_id=info:pmid/&rfr_iscdi=true