Multistability analysis for a general class of delayed Cohen–Grossberg neural networks

In this paper, by discussing parameter conditions based on properties of activation functions, we decompose state space into positively invariant sets and establish sufficient conditions for the existence of locally stable equilibria for delayed Cohen–Grossberg neural networks (CGNNs) through Cauchy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information sciences 2012-03, Vol.187, p.233-244
Hauptverfasser: Huang, Zhenkun, Feng, Chunhua, Mohamad, Sannay
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 244
container_issue
container_start_page 233
container_title Information sciences
container_volume 187
creator Huang, Zhenkun
Feng, Chunhua
Mohamad, Sannay
description In this paper, by discussing parameter conditions based on properties of activation functions, we decompose state space into positively invariant sets and establish sufficient conditions for the existence of locally stable equilibria for delayed Cohen–Grossberg neural networks (CGNNs) through Cauchy convergence principle. Some new criteria are derived for ensuring equilibria (periodic orbits) to be locally or globally exponentially stable in any designated region. Finally, our results are demonstrated by four numerical simulations.
doi_str_mv 10.1016/j.ins.2011.10.019
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1010882901</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020025511005627</els_id><sourcerecordid>1010882901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-b03b1213325c84c14ca1de9d6b695ba26da724831c470308a23637ac894983303</originalsourceid><addsrcrecordid>eNp9kLFOwzAQhi0EEqXwAGweWRLOduIkYkIVFKQiFpDYIse5FBc3KXYCysY78IY8CY7KzHS60_ef7j5CzhnEDJi83MSm9TEHxkIfAysOyIzlGY8kL9ghmQFwiICn6TE58X4DAEkm5Yy8PAy2N75XlbGmH6lqlR298bTpHFV0jS06Zam2ynvaNbRGq0as6aJ7xfbn63vpOu8rdGva4jCRLfafnXvzp-SoUdbj2V-dk-fbm6fFXbR6XN4vrleRFgL6qAJRMc6E4KnOE80SrViNRS0rWaSV4rJWGU9ywXSSgYBccSFFpnReJEUeNog5udjv3bnufUDfl1vjNVqrWuwGXwY7kOe8ABZQtkf1dLTDptw5s1VuDNDEyXJTBovlZHEaBYshc7XPYPjhw6ArvTbYaqyNQ92XdWf-Sf8C79V7FQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1010882901</pqid></control><display><type>article</type><title>Multistability analysis for a general class of delayed Cohen–Grossberg neural networks</title><source>Elsevier ScienceDirect Journals</source><creator>Huang, Zhenkun ; Feng, Chunhua ; Mohamad, Sannay</creator><creatorcontrib>Huang, Zhenkun ; Feng, Chunhua ; Mohamad, Sannay</creatorcontrib><description>In this paper, by discussing parameter conditions based on properties of activation functions, we decompose state space into positively invariant sets and establish sufficient conditions for the existence of locally stable equilibria for delayed Cohen–Grossberg neural networks (CGNNs) through Cauchy convergence principle. Some new criteria are derived for ensuring equilibria (periodic orbits) to be locally or globally exponentially stable in any designated region. Finally, our results are demonstrated by four numerical simulations.</description><identifier>ISSN: 0020-0255</identifier><identifier>EISSN: 1872-6291</identifier><identifier>DOI: 10.1016/j.ins.2011.10.019</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Cohen–Grossberg neural networks ; Computer simulation ; Convergence ; Criteria ; Equilibrium ; Exponential stability ; Invariants ; Mathematical analysis ; Mathematical models ; Multistability analysis ; Neural networks ; Orbits ; Periodic orbit</subject><ispartof>Information sciences, 2012-03, Vol.187, p.233-244</ispartof><rights>2011 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-b03b1213325c84c14ca1de9d6b695ba26da724831c470308a23637ac894983303</citedby><cites>FETCH-LOGICAL-c330t-b03b1213325c84c14ca1de9d6b695ba26da724831c470308a23637ac894983303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0020025511005627$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Huang, Zhenkun</creatorcontrib><creatorcontrib>Feng, Chunhua</creatorcontrib><creatorcontrib>Mohamad, Sannay</creatorcontrib><title>Multistability analysis for a general class of delayed Cohen–Grossberg neural networks</title><title>Information sciences</title><description>In this paper, by discussing parameter conditions based on properties of activation functions, we decompose state space into positively invariant sets and establish sufficient conditions for the existence of locally stable equilibria for delayed Cohen–Grossberg neural networks (CGNNs) through Cauchy convergence principle. Some new criteria are derived for ensuring equilibria (periodic orbits) to be locally or globally exponentially stable in any designated region. Finally, our results are demonstrated by four numerical simulations.</description><subject>Cohen–Grossberg neural networks</subject><subject>Computer simulation</subject><subject>Convergence</subject><subject>Criteria</subject><subject>Equilibrium</subject><subject>Exponential stability</subject><subject>Invariants</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Multistability analysis</subject><subject>Neural networks</subject><subject>Orbits</subject><subject>Periodic orbit</subject><issn>0020-0255</issn><issn>1872-6291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kLFOwzAQhi0EEqXwAGweWRLOduIkYkIVFKQiFpDYIse5FBc3KXYCysY78IY8CY7KzHS60_ef7j5CzhnEDJi83MSm9TEHxkIfAysOyIzlGY8kL9ghmQFwiICn6TE58X4DAEkm5Yy8PAy2N75XlbGmH6lqlR298bTpHFV0jS06Zam2ynvaNbRGq0as6aJ7xfbn63vpOu8rdGva4jCRLfafnXvzp-SoUdbj2V-dk-fbm6fFXbR6XN4vrleRFgL6qAJRMc6E4KnOE80SrViNRS0rWaSV4rJWGU9ywXSSgYBccSFFpnReJEUeNog5udjv3bnufUDfl1vjNVqrWuwGXwY7kOe8ABZQtkf1dLTDptw5s1VuDNDEyXJTBovlZHEaBYshc7XPYPjhw6ArvTbYaqyNQ92XdWf-Sf8C79V7FQ</recordid><startdate>20120315</startdate><enddate>20120315</enddate><creator>Huang, Zhenkun</creator><creator>Feng, Chunhua</creator><creator>Mohamad, Sannay</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20120315</creationdate><title>Multistability analysis for a general class of delayed Cohen–Grossberg neural networks</title><author>Huang, Zhenkun ; Feng, Chunhua ; Mohamad, Sannay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-b03b1213325c84c14ca1de9d6b695ba26da724831c470308a23637ac894983303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Cohen–Grossberg neural networks</topic><topic>Computer simulation</topic><topic>Convergence</topic><topic>Criteria</topic><topic>Equilibrium</topic><topic>Exponential stability</topic><topic>Invariants</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Multistability analysis</topic><topic>Neural networks</topic><topic>Orbits</topic><topic>Periodic orbit</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Zhenkun</creatorcontrib><creatorcontrib>Feng, Chunhua</creatorcontrib><creatorcontrib>Mohamad, Sannay</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Information sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Zhenkun</au><au>Feng, Chunhua</au><au>Mohamad, Sannay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multistability analysis for a general class of delayed Cohen–Grossberg neural networks</atitle><jtitle>Information sciences</jtitle><date>2012-03-15</date><risdate>2012</risdate><volume>187</volume><spage>233</spage><epage>244</epage><pages>233-244</pages><issn>0020-0255</issn><eissn>1872-6291</eissn><abstract>In this paper, by discussing parameter conditions based on properties of activation functions, we decompose state space into positively invariant sets and establish sufficient conditions for the existence of locally stable equilibria for delayed Cohen–Grossberg neural networks (CGNNs) through Cauchy convergence principle. Some new criteria are derived for ensuring equilibria (periodic orbits) to be locally or globally exponentially stable in any designated region. Finally, our results are demonstrated by four numerical simulations.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.ins.2011.10.019</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-0255
ispartof Information sciences, 2012-03, Vol.187, p.233-244
issn 0020-0255
1872-6291
language eng
recordid cdi_proquest_miscellaneous_1010882901
source Elsevier ScienceDirect Journals
subjects Cohen–Grossberg neural networks
Computer simulation
Convergence
Criteria
Equilibrium
Exponential stability
Invariants
Mathematical analysis
Mathematical models
Multistability analysis
Neural networks
Orbits
Periodic orbit
title Multistability analysis for a general class of delayed Cohen–Grossberg neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T15%3A08%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multistability%20analysis%20for%20a%20general%20class%20of%20delayed%20Cohen%E2%80%93Grossberg%20neural%20networks&rft.jtitle=Information%20sciences&rft.au=Huang,%20Zhenkun&rft.date=2012-03-15&rft.volume=187&rft.spage=233&rft.epage=244&rft.pages=233-244&rft.issn=0020-0255&rft.eissn=1872-6291&rft_id=info:doi/10.1016/j.ins.2011.10.019&rft_dat=%3Cproquest_cross%3E1010882901%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1010882901&rft_id=info:pmid/&rft_els_id=S0020025511005627&rfr_iscdi=true