Multistability analysis for a general class of delayed Cohen–Grossberg neural networks
In this paper, by discussing parameter conditions based on properties of activation functions, we decompose state space into positively invariant sets and establish sufficient conditions for the existence of locally stable equilibria for delayed Cohen–Grossberg neural networks (CGNNs) through Cauchy...
Gespeichert in:
Veröffentlicht in: | Information sciences 2012-03, Vol.187, p.233-244 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 244 |
---|---|
container_issue | |
container_start_page | 233 |
container_title | Information sciences |
container_volume | 187 |
creator | Huang, Zhenkun Feng, Chunhua Mohamad, Sannay |
description | In this paper, by discussing parameter conditions based on properties of activation functions, we decompose state space into positively invariant sets and establish sufficient conditions for the existence of locally stable equilibria for delayed Cohen–Grossberg neural networks (CGNNs) through Cauchy convergence principle. Some new criteria are derived for ensuring equilibria (periodic orbits) to be locally or globally exponentially stable in any designated region. Finally, our results are demonstrated by four numerical simulations. |
doi_str_mv | 10.1016/j.ins.2011.10.019 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1010882901</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020025511005627</els_id><sourcerecordid>1010882901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-b03b1213325c84c14ca1de9d6b695ba26da724831c470308a23637ac894983303</originalsourceid><addsrcrecordid>eNp9kLFOwzAQhi0EEqXwAGweWRLOduIkYkIVFKQiFpDYIse5FBc3KXYCysY78IY8CY7KzHS60_ef7j5CzhnEDJi83MSm9TEHxkIfAysOyIzlGY8kL9ghmQFwiICn6TE58X4DAEkm5Yy8PAy2N75XlbGmH6lqlR298bTpHFV0jS06Zam2ynvaNbRGq0as6aJ7xfbn63vpOu8rdGva4jCRLfafnXvzp-SoUdbj2V-dk-fbm6fFXbR6XN4vrleRFgL6qAJRMc6E4KnOE80SrViNRS0rWaSV4rJWGU9ywXSSgYBccSFFpnReJEUeNog5udjv3bnufUDfl1vjNVqrWuwGXwY7kOe8ABZQtkf1dLTDptw5s1VuDNDEyXJTBovlZHEaBYshc7XPYPjhw6ArvTbYaqyNQ92XdWf-Sf8C79V7FQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1010882901</pqid></control><display><type>article</type><title>Multistability analysis for a general class of delayed Cohen–Grossberg neural networks</title><source>Elsevier ScienceDirect Journals</source><creator>Huang, Zhenkun ; Feng, Chunhua ; Mohamad, Sannay</creator><creatorcontrib>Huang, Zhenkun ; Feng, Chunhua ; Mohamad, Sannay</creatorcontrib><description>In this paper, by discussing parameter conditions based on properties of activation functions, we decompose state space into positively invariant sets and establish sufficient conditions for the existence of locally stable equilibria for delayed Cohen–Grossberg neural networks (CGNNs) through Cauchy convergence principle. Some new criteria are derived for ensuring equilibria (periodic orbits) to be locally or globally exponentially stable in any designated region. Finally, our results are demonstrated by four numerical simulations.</description><identifier>ISSN: 0020-0255</identifier><identifier>EISSN: 1872-6291</identifier><identifier>DOI: 10.1016/j.ins.2011.10.019</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Cohen–Grossberg neural networks ; Computer simulation ; Convergence ; Criteria ; Equilibrium ; Exponential stability ; Invariants ; Mathematical analysis ; Mathematical models ; Multistability analysis ; Neural networks ; Orbits ; Periodic orbit</subject><ispartof>Information sciences, 2012-03, Vol.187, p.233-244</ispartof><rights>2011 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-b03b1213325c84c14ca1de9d6b695ba26da724831c470308a23637ac894983303</citedby><cites>FETCH-LOGICAL-c330t-b03b1213325c84c14ca1de9d6b695ba26da724831c470308a23637ac894983303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0020025511005627$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Huang, Zhenkun</creatorcontrib><creatorcontrib>Feng, Chunhua</creatorcontrib><creatorcontrib>Mohamad, Sannay</creatorcontrib><title>Multistability analysis for a general class of delayed Cohen–Grossberg neural networks</title><title>Information sciences</title><description>In this paper, by discussing parameter conditions based on properties of activation functions, we decompose state space into positively invariant sets and establish sufficient conditions for the existence of locally stable equilibria for delayed Cohen–Grossberg neural networks (CGNNs) through Cauchy convergence principle. Some new criteria are derived for ensuring equilibria (periodic orbits) to be locally or globally exponentially stable in any designated region. Finally, our results are demonstrated by four numerical simulations.</description><subject>Cohen–Grossberg neural networks</subject><subject>Computer simulation</subject><subject>Convergence</subject><subject>Criteria</subject><subject>Equilibrium</subject><subject>Exponential stability</subject><subject>Invariants</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Multistability analysis</subject><subject>Neural networks</subject><subject>Orbits</subject><subject>Periodic orbit</subject><issn>0020-0255</issn><issn>1872-6291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kLFOwzAQhi0EEqXwAGweWRLOduIkYkIVFKQiFpDYIse5FBc3KXYCysY78IY8CY7KzHS60_ef7j5CzhnEDJi83MSm9TEHxkIfAysOyIzlGY8kL9ghmQFwiICn6TE58X4DAEkm5Yy8PAy2N75XlbGmH6lqlR298bTpHFV0jS06Zam2ynvaNbRGq0as6aJ7xfbn63vpOu8rdGva4jCRLfafnXvzp-SoUdbj2V-dk-fbm6fFXbR6XN4vrleRFgL6qAJRMc6E4KnOE80SrViNRS0rWaSV4rJWGU9ywXSSgYBccSFFpnReJEUeNog5udjv3bnufUDfl1vjNVqrWuwGXwY7kOe8ABZQtkf1dLTDptw5s1VuDNDEyXJTBovlZHEaBYshc7XPYPjhw6ArvTbYaqyNQ92XdWf-Sf8C79V7FQ</recordid><startdate>20120315</startdate><enddate>20120315</enddate><creator>Huang, Zhenkun</creator><creator>Feng, Chunhua</creator><creator>Mohamad, Sannay</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20120315</creationdate><title>Multistability analysis for a general class of delayed Cohen–Grossberg neural networks</title><author>Huang, Zhenkun ; Feng, Chunhua ; Mohamad, Sannay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-b03b1213325c84c14ca1de9d6b695ba26da724831c470308a23637ac894983303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Cohen–Grossberg neural networks</topic><topic>Computer simulation</topic><topic>Convergence</topic><topic>Criteria</topic><topic>Equilibrium</topic><topic>Exponential stability</topic><topic>Invariants</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Multistability analysis</topic><topic>Neural networks</topic><topic>Orbits</topic><topic>Periodic orbit</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Zhenkun</creatorcontrib><creatorcontrib>Feng, Chunhua</creatorcontrib><creatorcontrib>Mohamad, Sannay</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Information sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Zhenkun</au><au>Feng, Chunhua</au><au>Mohamad, Sannay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multistability analysis for a general class of delayed Cohen–Grossberg neural networks</atitle><jtitle>Information sciences</jtitle><date>2012-03-15</date><risdate>2012</risdate><volume>187</volume><spage>233</spage><epage>244</epage><pages>233-244</pages><issn>0020-0255</issn><eissn>1872-6291</eissn><abstract>In this paper, by discussing parameter conditions based on properties of activation functions, we decompose state space into positively invariant sets and establish sufficient conditions for the existence of locally stable equilibria for delayed Cohen–Grossberg neural networks (CGNNs) through Cauchy convergence principle. Some new criteria are derived for ensuring equilibria (periodic orbits) to be locally or globally exponentially stable in any designated region. Finally, our results are demonstrated by four numerical simulations.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.ins.2011.10.019</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-0255 |
ispartof | Information sciences, 2012-03, Vol.187, p.233-244 |
issn | 0020-0255 1872-6291 |
language | eng |
recordid | cdi_proquest_miscellaneous_1010882901 |
source | Elsevier ScienceDirect Journals |
subjects | Cohen–Grossberg neural networks Computer simulation Convergence Criteria Equilibrium Exponential stability Invariants Mathematical analysis Mathematical models Multistability analysis Neural networks Orbits Periodic orbit |
title | Multistability analysis for a general class of delayed Cohen–Grossberg neural networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T15%3A08%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multistability%20analysis%20for%20a%20general%20class%20of%20delayed%20Cohen%E2%80%93Grossberg%20neural%20networks&rft.jtitle=Information%20sciences&rft.au=Huang,%20Zhenkun&rft.date=2012-03-15&rft.volume=187&rft.spage=233&rft.epage=244&rft.pages=233-244&rft.issn=0020-0255&rft.eissn=1872-6291&rft_id=info:doi/10.1016/j.ins.2011.10.019&rft_dat=%3Cproquest_cross%3E1010882901%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1010882901&rft_id=info:pmid/&rft_els_id=S0020025511005627&rfr_iscdi=true |