Multistability analysis for a general class of delayed Cohen–Grossberg neural networks

In this paper, by discussing parameter conditions based on properties of activation functions, we decompose state space into positively invariant sets and establish sufficient conditions for the existence of locally stable equilibria for delayed Cohen–Grossberg neural networks (CGNNs) through Cauchy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information sciences 2012-03, Vol.187, p.233-244
Hauptverfasser: Huang, Zhenkun, Feng, Chunhua, Mohamad, Sannay
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, by discussing parameter conditions based on properties of activation functions, we decompose state space into positively invariant sets and establish sufficient conditions for the existence of locally stable equilibria for delayed Cohen–Grossberg neural networks (CGNNs) through Cauchy convergence principle. Some new criteria are derived for ensuring equilibria (periodic orbits) to be locally or globally exponentially stable in any designated region. Finally, our results are demonstrated by four numerical simulations.
ISSN:0020-0255
1872-6291
DOI:10.1016/j.ins.2011.10.019