Illumination invariant extraction for face recognition using neighboring wavelet coefficients
The features of a face can change drastically as the illumination changes. In contrast to pose position and expression, illumination changes present a much greater challenge to face recognition. In this paper, we propose a novel wavelet based approach that considers the correlation of neighboring wa...
Gespeichert in:
Veröffentlicht in: | Pattern recognition 2012-04, Vol.45 (4), p.1299-1305 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1305 |
---|---|
container_issue | 4 |
container_start_page | 1299 |
container_title | Pattern recognition |
container_volume | 45 |
creator | Cao, X. Shen, W. Yu, L.G. Wang, Y.L. Yang, J.Y. Zhang, Z.W. |
description | The features of a face can change drastically as the illumination changes. In contrast to pose position and expression, illumination changes present a much greater challenge to face recognition. In this paper, we propose a novel wavelet based approach that considers the correlation of neighboring wavelet coefficients to extract an illumination invariant. This invariant represents the key facial structure needed for face recognition. Our method has better edge preserving ability in low frequency illumination fields and better useful information saving ability in high frequency fields using wavelet based NeighShrink denoise techniques. This method proposes different process approaches for training images and testing images since these images always have different illuminations. More importantly, by having different processes, a simple processing algorithm with low time complexity can be applied to the testing image. This leads to an easy application to real face recognition systems. Experimental results on Yale face database B and CMU PIE Face Database show that excellent recognition rates can be achieved by the proposed method.
► A novel approach considering the correlation of neighboring wavelet coefficients. ► Great edge preserving ability and useful information saving ability. ► Excellent recognition rate due to effective illumination invariant extraction. ► Different process approaches for training images and testing images. ► An easy application due to the simple processing algorithm for the testing image. |
doi_str_mv | 10.1016/j.patcog.2011.09.010 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1010881372</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S003132031100389X</els_id><sourcerecordid>1010881372</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-72143b4d35b9b6bd396e6ac93d5b3b8414bcfdfafe354a08c0263d614d79bc093</originalsourceid><addsrcrecordid>eNp9kEtPMyEUhonRxHr5By5m8yVuZjwMzG1jYoy3xMSNLg0B5lBpptAPaNV_L7XGpSvI4Xl5cx5CzihUFGh7sahWMmk_r2qgtIKhAgp7ZEb7jpUN5fU-mQEwWrIa2CE5inEBQLv8MCOvD9O0Xlonk_WusG4jg5UuFfiRgtTfQ-NDYaTGImDucPZ7uI7WzQuHdv6mfNje3-UGJ0yF9miM1RZdiifkwMgp4unPeUxebm-er-_Lx6e7h-urx1Jz1qSyqylnio-sUYNq1ciGFlupBzY2iqmeU660GY00yBouoddQt2xsKR-7QWkY2DE53_27Cv7_GmMSSxs1TpN06NdRZEvQ95R1dUb5DtXBxxjQiFWwSxk-M7TlWrEQO5tia1PAIHI4x_79NMio5WSCdNrG32zdtMCBN5m73HGY191YDCJuVWgcbdaXxOjt30VfOJqOyQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1010881372</pqid></control><display><type>article</type><title>Illumination invariant extraction for face recognition using neighboring wavelet coefficients</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Cao, X. ; Shen, W. ; Yu, L.G. ; Wang, Y.L. ; Yang, J.Y. ; Zhang, Z.W.</creator><creatorcontrib>Cao, X. ; Shen, W. ; Yu, L.G. ; Wang, Y.L. ; Yang, J.Y. ; Zhang, Z.W.</creatorcontrib><description>The features of a face can change drastically as the illumination changes. In contrast to pose position and expression, illumination changes present a much greater challenge to face recognition. In this paper, we propose a novel wavelet based approach that considers the correlation of neighboring wavelet coefficients to extract an illumination invariant. This invariant represents the key facial structure needed for face recognition. Our method has better edge preserving ability in low frequency illumination fields and better useful information saving ability in high frequency fields using wavelet based NeighShrink denoise techniques. This method proposes different process approaches for training images and testing images since these images always have different illuminations. More importantly, by having different processes, a simple processing algorithm with low time complexity can be applied to the testing image. This leads to an easy application to real face recognition systems. Experimental results on Yale face database B and CMU PIE Face Database show that excellent recognition rates can be achieved by the proposed method.
► A novel approach considering the correlation of neighboring wavelet coefficients. ► Great edge preserving ability and useful information saving ability. ► Excellent recognition rate due to effective illumination invariant extraction. ► Different process approaches for training images and testing images. ► An easy application due to the simple processing algorithm for the testing image.</description><identifier>ISSN: 0031-3203</identifier><identifier>EISSN: 1873-5142</identifier><identifier>DOI: 10.1016/j.patcog.2011.09.010</identifier><identifier>CODEN: PTNRA8</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Detection, estimation, filtering, equalization, prediction ; Exact sciences and technology ; Face recognition ; High frequencies ; Illumination ; Illumination invariant ; Image processing ; Information, signal and communications theory ; Invariants ; Neighboring wavelet coefficients ; NeighShrink denoise model ; Pattern recognition ; Signal and communications theory ; Signal processing ; Signal representation. Spectral analysis ; Signal, noise ; Telecommunications and information theory ; Wavelet</subject><ispartof>Pattern recognition, 2012-04, Vol.45 (4), p.1299-1305</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-72143b4d35b9b6bd396e6ac93d5b3b8414bcfdfafe354a08c0263d614d79bc093</citedby><cites>FETCH-LOGICAL-c435t-72143b4d35b9b6bd396e6ac93d5b3b8414bcfdfafe354a08c0263d614d79bc093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S003132031100389X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25604045$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Cao, X.</creatorcontrib><creatorcontrib>Shen, W.</creatorcontrib><creatorcontrib>Yu, L.G.</creatorcontrib><creatorcontrib>Wang, Y.L.</creatorcontrib><creatorcontrib>Yang, J.Y.</creatorcontrib><creatorcontrib>Zhang, Z.W.</creatorcontrib><title>Illumination invariant extraction for face recognition using neighboring wavelet coefficients</title><title>Pattern recognition</title><description>The features of a face can change drastically as the illumination changes. In contrast to pose position and expression, illumination changes present a much greater challenge to face recognition. In this paper, we propose a novel wavelet based approach that considers the correlation of neighboring wavelet coefficients to extract an illumination invariant. This invariant represents the key facial structure needed for face recognition. Our method has better edge preserving ability in low frequency illumination fields and better useful information saving ability in high frequency fields using wavelet based NeighShrink denoise techniques. This method proposes different process approaches for training images and testing images since these images always have different illuminations. More importantly, by having different processes, a simple processing algorithm with low time complexity can be applied to the testing image. This leads to an easy application to real face recognition systems. Experimental results on Yale face database B and CMU PIE Face Database show that excellent recognition rates can be achieved by the proposed method.
► A novel approach considering the correlation of neighboring wavelet coefficients. ► Great edge preserving ability and useful information saving ability. ► Excellent recognition rate due to effective illumination invariant extraction. ► Different process approaches for training images and testing images. ► An easy application due to the simple processing algorithm for the testing image.</description><subject>Applied sciences</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Exact sciences and technology</subject><subject>Face recognition</subject><subject>High frequencies</subject><subject>Illumination</subject><subject>Illumination invariant</subject><subject>Image processing</subject><subject>Information, signal and communications theory</subject><subject>Invariants</subject><subject>Neighboring wavelet coefficients</subject><subject>NeighShrink denoise model</subject><subject>Pattern recognition</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal representation. Spectral analysis</subject><subject>Signal, noise</subject><subject>Telecommunications and information theory</subject><subject>Wavelet</subject><issn>0031-3203</issn><issn>1873-5142</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPMyEUhonRxHr5By5m8yVuZjwMzG1jYoy3xMSNLg0B5lBpptAPaNV_L7XGpSvI4Xl5cx5CzihUFGh7sahWMmk_r2qgtIKhAgp7ZEb7jpUN5fU-mQEwWrIa2CE5inEBQLv8MCOvD9O0Xlonk_WusG4jg5UuFfiRgtTfQ-NDYaTGImDucPZ7uI7WzQuHdv6mfNje3-UGJ0yF9miM1RZdiifkwMgp4unPeUxebm-er-_Lx6e7h-urx1Jz1qSyqylnio-sUYNq1ciGFlupBzY2iqmeU660GY00yBouoddQt2xsKR-7QWkY2DE53_27Cv7_GmMSSxs1TpN06NdRZEvQ95R1dUb5DtXBxxjQiFWwSxk-M7TlWrEQO5tia1PAIHI4x_79NMio5WSCdNrG32zdtMCBN5m73HGY191YDCJuVWgcbdaXxOjt30VfOJqOyQ</recordid><startdate>20120401</startdate><enddate>20120401</enddate><creator>Cao, X.</creator><creator>Shen, W.</creator><creator>Yu, L.G.</creator><creator>Wang, Y.L.</creator><creator>Yang, J.Y.</creator><creator>Zhang, Z.W.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20120401</creationdate><title>Illumination invariant extraction for face recognition using neighboring wavelet coefficients</title><author>Cao, X. ; Shen, W. ; Yu, L.G. ; Wang, Y.L. ; Yang, J.Y. ; Zhang, Z.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-72143b4d35b9b6bd396e6ac93d5b3b8414bcfdfafe354a08c0263d614d79bc093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Exact sciences and technology</topic><topic>Face recognition</topic><topic>High frequencies</topic><topic>Illumination</topic><topic>Illumination invariant</topic><topic>Image processing</topic><topic>Information, signal and communications theory</topic><topic>Invariants</topic><topic>Neighboring wavelet coefficients</topic><topic>NeighShrink denoise model</topic><topic>Pattern recognition</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal representation. Spectral analysis</topic><topic>Signal, noise</topic><topic>Telecommunications and information theory</topic><topic>Wavelet</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, X.</creatorcontrib><creatorcontrib>Shen, W.</creatorcontrib><creatorcontrib>Yu, L.G.</creatorcontrib><creatorcontrib>Wang, Y.L.</creatorcontrib><creatorcontrib>Yang, J.Y.</creatorcontrib><creatorcontrib>Zhang, Z.W.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Pattern recognition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, X.</au><au>Shen, W.</au><au>Yu, L.G.</au><au>Wang, Y.L.</au><au>Yang, J.Y.</au><au>Zhang, Z.W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Illumination invariant extraction for face recognition using neighboring wavelet coefficients</atitle><jtitle>Pattern recognition</jtitle><date>2012-04-01</date><risdate>2012</risdate><volume>45</volume><issue>4</issue><spage>1299</spage><epage>1305</epage><pages>1299-1305</pages><issn>0031-3203</issn><eissn>1873-5142</eissn><coden>PTNRA8</coden><abstract>The features of a face can change drastically as the illumination changes. In contrast to pose position and expression, illumination changes present a much greater challenge to face recognition. In this paper, we propose a novel wavelet based approach that considers the correlation of neighboring wavelet coefficients to extract an illumination invariant. This invariant represents the key facial structure needed for face recognition. Our method has better edge preserving ability in low frequency illumination fields and better useful information saving ability in high frequency fields using wavelet based NeighShrink denoise techniques. This method proposes different process approaches for training images and testing images since these images always have different illuminations. More importantly, by having different processes, a simple processing algorithm with low time complexity can be applied to the testing image. This leads to an easy application to real face recognition systems. Experimental results on Yale face database B and CMU PIE Face Database show that excellent recognition rates can be achieved by the proposed method.
► A novel approach considering the correlation of neighboring wavelet coefficients. ► Great edge preserving ability and useful information saving ability. ► Excellent recognition rate due to effective illumination invariant extraction. ► Different process approaches for training images and testing images. ► An easy application due to the simple processing algorithm for the testing image.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.patcog.2011.09.010</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-3203 |
ispartof | Pattern recognition, 2012-04, Vol.45 (4), p.1299-1305 |
issn | 0031-3203 1873-5142 |
language | eng |
recordid | cdi_proquest_miscellaneous_1010881372 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Applied sciences Detection, estimation, filtering, equalization, prediction Exact sciences and technology Face recognition High frequencies Illumination Illumination invariant Image processing Information, signal and communications theory Invariants Neighboring wavelet coefficients NeighShrink denoise model Pattern recognition Signal and communications theory Signal processing Signal representation. Spectral analysis Signal, noise Telecommunications and information theory Wavelet |
title | Illumination invariant extraction for face recognition using neighboring wavelet coefficients |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T06%3A56%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Illumination%20invariant%20extraction%20for%20face%20recognition%20using%20neighboring%20wavelet%20coefficients&rft.jtitle=Pattern%20recognition&rft.au=Cao,%20X.&rft.date=2012-04-01&rft.volume=45&rft.issue=4&rft.spage=1299&rft.epage=1305&rft.pages=1299-1305&rft.issn=0031-3203&rft.eissn=1873-5142&rft.coden=PTNRA8&rft_id=info:doi/10.1016/j.patcog.2011.09.010&rft_dat=%3Cproquest_cross%3E1010881372%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1010881372&rft_id=info:pmid/&rft_els_id=S003132031100389X&rfr_iscdi=true |