Markov network based ontology matching

Ontology matching is a vital step whenever there is a need to integrate and reason about overlapping domains of knowledge. Systems that automate this task are of a great need. iMatch is a probabilistic scheme for ontology matching based on Markov networks, which has several advantages over other pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computer and system sciences 2012, Vol.78 (1), p.105-118
Hauptverfasser: Albagli, Sivan, Ben-Eliyahu-Zohary, Rachel, Shimony, Solomon E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 118
container_issue 1
container_start_page 105
container_title Journal of computer and system sciences
container_volume 78
creator Albagli, Sivan
Ben-Eliyahu-Zohary, Rachel
Shimony, Solomon E.
description Ontology matching is a vital step whenever there is a need to integrate and reason about overlapping domains of knowledge. Systems that automate this task are of a great need. iMatch is a probabilistic scheme for ontology matching based on Markov networks, which has several advantages over other probabilistic schemes. First, it handles the high computational complexity by doing approximate reasoning, rather then by ad-hoc pruning. Second, the probabilities that it uses are learned from matched data. Finally, iMatch naturally supports interactive semi-automatic matches. Experiments using the standard benchmark tests that compare our approach with the most promising existing systems show that iMatch is one of the top performers.
doi_str_mv 10.1016/j.jcss.2011.02.014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1010880548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022000011000432</els_id><sourcerecordid>1010880548</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-b32a03fe690bfd737a869a287b03e5d023dc271e72ca5a45943a63c797f88a273</originalsourceid><addsrcrecordid>eNp9kD1PwzAURS0EEqXwB5gyIZaEZzuJHYkFVXxJRSwwW47zUpymcbHTov57XIWZt7zlnCvdS8g1hYwCLe-6rDMhZAwozYBlQPMTMqNQQcoEy0_JDICxFOKdk4sQOohgUfIZuXnTfu32yYDjj_PrpNYBm8QNo-vd6pBs9Gi-7LC6JGet7gNe_f05-Xx6_Fi8pMv359fFwzI1XIgxrTnTwFssK6jbRnChZVlpJkUNHIsGGG8MExQFM7rQeVHlXJfciEq0Umom-JzcTrlb7753GEa1scFg3-sB3S6oWBakhCKXEWUTarwLwWOrtt5utD9E6MiVqlPHUdRxFAVMxVGidD9JGEvsLXoVjMXBYGM9mlE1zv6n_wJhpGlD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1010880548</pqid></control><display><type>article</type><title>Markov network based ontology matching</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Albagli, Sivan ; Ben-Eliyahu-Zohary, Rachel ; Shimony, Solomon E.</creator><creatorcontrib>Albagli, Sivan ; Ben-Eliyahu-Zohary, Rachel ; Shimony, Solomon E.</creatorcontrib><description>Ontology matching is a vital step whenever there is a need to integrate and reason about overlapping domains of knowledge. Systems that automate this task are of a great need. iMatch is a probabilistic scheme for ontology matching based on Markov networks, which has several advantages over other probabilistic schemes. First, it handles the high computational complexity by doing approximate reasoning, rather then by ad-hoc pruning. Second, the probabilities that it uses are learned from matched data. Finally, iMatch naturally supports interactive semi-automatic matches. Experiments using the standard benchmark tests that compare our approach with the most promising existing systems show that iMatch is one of the top performers.</description><identifier>ISSN: 0022-0000</identifier><identifier>EISSN: 1090-2724</identifier><identifier>DOI: 10.1016/j.jcss.2011.02.014</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Approximation ; Interactive ; Markov networks ; Markov processes ; Matching ; Networks ; Ontology matching ; Probabilistic methods ; Probabilistic reasoning ; Probability theory ; Tasks</subject><ispartof>Journal of computer and system sciences, 2012, Vol.78 (1), p.105-118</ispartof><rights>2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-b32a03fe690bfd737a869a287b03e5d023dc271e72ca5a45943a63c797f88a273</citedby><cites>FETCH-LOGICAL-c377t-b32a03fe690bfd737a869a287b03e5d023dc271e72ca5a45943a63c797f88a273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022000011000432$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,4010,27902,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Albagli, Sivan</creatorcontrib><creatorcontrib>Ben-Eliyahu-Zohary, Rachel</creatorcontrib><creatorcontrib>Shimony, Solomon E.</creatorcontrib><title>Markov network based ontology matching</title><title>Journal of computer and system sciences</title><description>Ontology matching is a vital step whenever there is a need to integrate and reason about overlapping domains of knowledge. Systems that automate this task are of a great need. iMatch is a probabilistic scheme for ontology matching based on Markov networks, which has several advantages over other probabilistic schemes. First, it handles the high computational complexity by doing approximate reasoning, rather then by ad-hoc pruning. Second, the probabilities that it uses are learned from matched data. Finally, iMatch naturally supports interactive semi-automatic matches. Experiments using the standard benchmark tests that compare our approach with the most promising existing systems show that iMatch is one of the top performers.</description><subject>Approximation</subject><subject>Interactive</subject><subject>Markov networks</subject><subject>Markov processes</subject><subject>Matching</subject><subject>Networks</subject><subject>Ontology matching</subject><subject>Probabilistic methods</subject><subject>Probabilistic reasoning</subject><subject>Probability theory</subject><subject>Tasks</subject><issn>0022-0000</issn><issn>1090-2724</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAURS0EEqXwB5gyIZaEZzuJHYkFVXxJRSwwW47zUpymcbHTov57XIWZt7zlnCvdS8g1hYwCLe-6rDMhZAwozYBlQPMTMqNQQcoEy0_JDICxFOKdk4sQOohgUfIZuXnTfu32yYDjj_PrpNYBm8QNo-vd6pBs9Gi-7LC6JGet7gNe_f05-Xx6_Fi8pMv359fFwzI1XIgxrTnTwFssK6jbRnChZVlpJkUNHIsGGG8MExQFM7rQeVHlXJfciEq0Umom-JzcTrlb7753GEa1scFg3-sB3S6oWBakhCKXEWUTarwLwWOrtt5utD9E6MiVqlPHUdRxFAVMxVGidD9JGEvsLXoVjMXBYGM9mlE1zv6n_wJhpGlD</recordid><startdate>2012</startdate><enddate>2012</enddate><creator>Albagli, Sivan</creator><creator>Ben-Eliyahu-Zohary, Rachel</creator><creator>Shimony, Solomon E.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2012</creationdate><title>Markov network based ontology matching</title><author>Albagli, Sivan ; Ben-Eliyahu-Zohary, Rachel ; Shimony, Solomon E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-b32a03fe690bfd737a869a287b03e5d023dc271e72ca5a45943a63c797f88a273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Approximation</topic><topic>Interactive</topic><topic>Markov networks</topic><topic>Markov processes</topic><topic>Matching</topic><topic>Networks</topic><topic>Ontology matching</topic><topic>Probabilistic methods</topic><topic>Probabilistic reasoning</topic><topic>Probability theory</topic><topic>Tasks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Albagli, Sivan</creatorcontrib><creatorcontrib>Ben-Eliyahu-Zohary, Rachel</creatorcontrib><creatorcontrib>Shimony, Solomon E.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computer and system sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Albagli, Sivan</au><au>Ben-Eliyahu-Zohary, Rachel</au><au>Shimony, Solomon E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Markov network based ontology matching</atitle><jtitle>Journal of computer and system sciences</jtitle><date>2012</date><risdate>2012</risdate><volume>78</volume><issue>1</issue><spage>105</spage><epage>118</epage><pages>105-118</pages><issn>0022-0000</issn><eissn>1090-2724</eissn><abstract>Ontology matching is a vital step whenever there is a need to integrate and reason about overlapping domains of knowledge. Systems that automate this task are of a great need. iMatch is a probabilistic scheme for ontology matching based on Markov networks, which has several advantages over other probabilistic schemes. First, it handles the high computational complexity by doing approximate reasoning, rather then by ad-hoc pruning. Second, the probabilities that it uses are learned from matched data. Finally, iMatch naturally supports interactive semi-automatic matches. Experiments using the standard benchmark tests that compare our approach with the most promising existing systems show that iMatch is one of the top performers.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jcss.2011.02.014</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-0000
ispartof Journal of computer and system sciences, 2012, Vol.78 (1), p.105-118
issn 0022-0000
1090-2724
language eng
recordid cdi_proquest_miscellaneous_1010880548
source Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Approximation
Interactive
Markov networks
Markov processes
Matching
Networks
Ontology matching
Probabilistic methods
Probabilistic reasoning
Probability theory
Tasks
title Markov network based ontology matching
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T23%3A57%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Markov%20network%20based%20ontology%20matching&rft.jtitle=Journal%20of%20computer%20and%20system%20sciences&rft.au=Albagli,%20Sivan&rft.date=2012&rft.volume=78&rft.issue=1&rft.spage=105&rft.epage=118&rft.pages=105-118&rft.issn=0022-0000&rft.eissn=1090-2724&rft_id=info:doi/10.1016/j.jcss.2011.02.014&rft_dat=%3Cproquest_cross%3E1010880548%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1010880548&rft_id=info:pmid/&rft_els_id=S0022000011000432&rfr_iscdi=true