Semilinear systems involving multiple critical Hardy–Sobolev exponents and three singular points
In this paper, a semilinear system of elliptic equations is investigated, which involves multiple critical exponents and singular points. By variational methods and analytic techniques, the related best Hardy–Sobolev constants is studied and the existence of positive solutions is established.
Gespeichert in:
Veröffentlicht in: | Applied mathematics and computation 2011-12, Vol.218 (8), p.4514-4522 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4522 |
---|---|
container_issue | 8 |
container_start_page | 4514 |
container_title | Applied mathematics and computation |
container_volume | 218 |
creator | Kang, Dongsheng |
description | In this paper, a semilinear system of elliptic equations is investigated, which involves multiple critical exponents and singular points. By variational methods and analytic techniques, the related best Hardy–Sobolev constants is studied and the existence of positive solutions is established. |
doi_str_mv | 10.1016/j.amc.2011.10.033 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1010880046</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S009630031101263X</els_id><sourcerecordid>1010880046</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-6e1056010b11afe721f52d47507642647ed27dbfbdaf784028db2bc9d8b2f2f33</originalsourceid><addsrcrecordid>eNp9kMFuGyEURVHVSHWTfEB3bCplM-4DZpixuoqiJq5kqYs06xEDjxaLgSmMrXqXf8gf5kuC5SjLrBBw7n1wCPnCYMmAyW_bpRr1kgNjZb8EIT6QBetaUTWyXn0kC4CVrASA-EQ-57wFgFayekGGexyddwFVovmQZxwzdWEf_d6FP3Tc-dlNHqlObnZaebpWyRyeH5_u4xA97in-n2LAMGeqgqHz34RIc4nufCmcois3F-TMKp_x8nU9Jw-3P37frKvNr7ufN9ebSgsJcyWRQSOBwcCYsthyZhtu6rYpL625rFs0vDWDHYyybVcD78zAB70y3cAtt0Kck6tT75Tivx3muR9d1ui9Chh3uS-eoOsAallQdkJ1ijkntP2U3KjSoUBHTvbbvvjsjz6PR8VnyXx9rVe5mLBJBe3yW5A3ggnW1IX7fuKw_HXvMPVZOwwajUuo595E986UF1wXjTM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1010880046</pqid></control><display><type>article</type><title>Semilinear systems involving multiple critical Hardy–Sobolev exponents and three singular points</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Kang, Dongsheng</creator><creatorcontrib>Kang, Dongsheng</creatorcontrib><description>In this paper, a semilinear system of elliptic equations is investigated, which involves multiple critical exponents and singular points. By variational methods and analytic techniques, the related best Hardy–Sobolev constants is studied and the existence of positive solutions is established.</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2011.10.033</identifier><identifier>CODEN: AMHCBQ</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Calculus of variations and optimal control ; Computation ; Constants ; Critical exponent ; Exact sciences and technology ; Exponents ; Hardy inequality ; Mathematical analysis ; Mathematical models ; Mathematics ; Nonlinear algebraic and transcendental equations ; Numerical analysis ; Numerical analysis. Scientific computation ; Ordinary differential equations ; Partial differential equations ; Sciences and techniques of general use ; Semilinear elliptic system ; Solution ; Variational methods</subject><ispartof>Applied mathematics and computation, 2011-12, Vol.218 (8), p.4514-4522</ispartof><rights>2011 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-6e1056010b11afe721f52d47507642647ed27dbfbdaf784028db2bc9d8b2f2f33</citedby><cites>FETCH-LOGICAL-c360t-6e1056010b11afe721f52d47507642647ed27dbfbdaf784028db2bc9d8b2f2f33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.amc.2011.10.033$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25313154$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kang, Dongsheng</creatorcontrib><title>Semilinear systems involving multiple critical Hardy–Sobolev exponents and three singular points</title><title>Applied mathematics and computation</title><description>In this paper, a semilinear system of elliptic equations is investigated, which involves multiple critical exponents and singular points. By variational methods and analytic techniques, the related best Hardy–Sobolev constants is studied and the existence of positive solutions is established.</description><subject>Calculus of variations and optimal control</subject><subject>Computation</subject><subject>Constants</subject><subject>Critical exponent</subject><subject>Exact sciences and technology</subject><subject>Exponents</subject><subject>Hardy inequality</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Nonlinear algebraic and transcendental equations</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Ordinary differential equations</subject><subject>Partial differential equations</subject><subject>Sciences and techniques of general use</subject><subject>Semilinear elliptic system</subject><subject>Solution</subject><subject>Variational methods</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kMFuGyEURVHVSHWTfEB3bCplM-4DZpixuoqiJq5kqYs06xEDjxaLgSmMrXqXf8gf5kuC5SjLrBBw7n1wCPnCYMmAyW_bpRr1kgNjZb8EIT6QBetaUTWyXn0kC4CVrASA-EQ-57wFgFayekGGexyddwFVovmQZxwzdWEf_d6FP3Tc-dlNHqlObnZaebpWyRyeH5_u4xA97in-n2LAMGeqgqHz34RIc4nufCmcois3F-TMKp_x8nU9Jw-3P37frKvNr7ufN9ebSgsJcyWRQSOBwcCYsthyZhtu6rYpL625rFs0vDWDHYyybVcD78zAB70y3cAtt0Kck6tT75Tivx3muR9d1ui9Chh3uS-eoOsAallQdkJ1ijkntP2U3KjSoUBHTvbbvvjsjz6PR8VnyXx9rVe5mLBJBe3yW5A3ggnW1IX7fuKw_HXvMPVZOwwajUuo595E986UF1wXjTM</recordid><startdate>20111215</startdate><enddate>20111215</enddate><creator>Kang, Dongsheng</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20111215</creationdate><title>Semilinear systems involving multiple critical Hardy–Sobolev exponents and three singular points</title><author>Kang, Dongsheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-6e1056010b11afe721f52d47507642647ed27dbfbdaf784028db2bc9d8b2f2f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Calculus of variations and optimal control</topic><topic>Computation</topic><topic>Constants</topic><topic>Critical exponent</topic><topic>Exact sciences and technology</topic><topic>Exponents</topic><topic>Hardy inequality</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Nonlinear algebraic and transcendental equations</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Ordinary differential equations</topic><topic>Partial differential equations</topic><topic>Sciences and techniques of general use</topic><topic>Semilinear elliptic system</topic><topic>Solution</topic><topic>Variational methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Dongsheng</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Dongsheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semilinear systems involving multiple critical Hardy–Sobolev exponents and three singular points</atitle><jtitle>Applied mathematics and computation</jtitle><date>2011-12-15</date><risdate>2011</risdate><volume>218</volume><issue>8</issue><spage>4514</spage><epage>4522</epage><pages>4514-4522</pages><issn>0096-3003</issn><eissn>1873-5649</eissn><coden>AMHCBQ</coden><abstract>In this paper, a semilinear system of elliptic equations is investigated, which involves multiple critical exponents and singular points. By variational methods and analytic techniques, the related best Hardy–Sobolev constants is studied and the existence of positive solutions is established.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.amc.2011.10.033</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0096-3003 |
ispartof | Applied mathematics and computation, 2011-12, Vol.218 (8), p.4514-4522 |
issn | 0096-3003 1873-5649 |
language | eng |
recordid | cdi_proquest_miscellaneous_1010880046 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Calculus of variations and optimal control Computation Constants Critical exponent Exact sciences and technology Exponents Hardy inequality Mathematical analysis Mathematical models Mathematics Nonlinear algebraic and transcendental equations Numerical analysis Numerical analysis. Scientific computation Ordinary differential equations Partial differential equations Sciences and techniques of general use Semilinear elliptic system Solution Variational methods |
title | Semilinear systems involving multiple critical Hardy–Sobolev exponents and three singular points |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T16%3A53%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semilinear%20systems%20involving%20multiple%20critical%20Hardy%E2%80%93Sobolev%20exponents%20and%20three%20singular%20points&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Kang,%20Dongsheng&rft.date=2011-12-15&rft.volume=218&rft.issue=8&rft.spage=4514&rft.epage=4522&rft.pages=4514-4522&rft.issn=0096-3003&rft.eissn=1873-5649&rft.coden=AMHCBQ&rft_id=info:doi/10.1016/j.amc.2011.10.033&rft_dat=%3Cproquest_cross%3E1010880046%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1010880046&rft_id=info:pmid/&rft_els_id=S009630031101263X&rfr_iscdi=true |