Semilinear systems involving multiple critical Hardy–Sobolev exponents and three singular points

In this paper, a semilinear system of elliptic equations is investigated, which involves multiple critical exponents and singular points. By variational methods and analytic techniques, the related best Hardy–Sobolev constants is studied and the existence of positive solutions is established.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and computation 2011-12, Vol.218 (8), p.4514-4522
1. Verfasser: Kang, Dongsheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4522
container_issue 8
container_start_page 4514
container_title Applied mathematics and computation
container_volume 218
creator Kang, Dongsheng
description In this paper, a semilinear system of elliptic equations is investigated, which involves multiple critical exponents and singular points. By variational methods and analytic techniques, the related best Hardy–Sobolev constants is studied and the existence of positive solutions is established.
doi_str_mv 10.1016/j.amc.2011.10.033
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1010880046</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S009630031101263X</els_id><sourcerecordid>1010880046</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-6e1056010b11afe721f52d47507642647ed27dbfbdaf784028db2bc9d8b2f2f33</originalsourceid><addsrcrecordid>eNp9kMFuGyEURVHVSHWTfEB3bCplM-4DZpixuoqiJq5kqYs06xEDjxaLgSmMrXqXf8gf5kuC5SjLrBBw7n1wCPnCYMmAyW_bpRr1kgNjZb8EIT6QBetaUTWyXn0kC4CVrASA-EQ-57wFgFayekGGexyddwFVovmQZxwzdWEf_d6FP3Tc-dlNHqlObnZaebpWyRyeH5_u4xA97in-n2LAMGeqgqHz34RIc4nufCmcois3F-TMKp_x8nU9Jw-3P37frKvNr7ufN9ebSgsJcyWRQSOBwcCYsthyZhtu6rYpL625rFs0vDWDHYyybVcD78zAB70y3cAtt0Kck6tT75Tivx3muR9d1ui9Chh3uS-eoOsAallQdkJ1ijkntP2U3KjSoUBHTvbbvvjsjz6PR8VnyXx9rVe5mLBJBe3yW5A3ggnW1IX7fuKw_HXvMPVZOwwajUuo595E986UF1wXjTM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1010880046</pqid></control><display><type>article</type><title>Semilinear systems involving multiple critical Hardy–Sobolev exponents and three singular points</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Kang, Dongsheng</creator><creatorcontrib>Kang, Dongsheng</creatorcontrib><description>In this paper, a semilinear system of elliptic equations is investigated, which involves multiple critical exponents and singular points. By variational methods and analytic techniques, the related best Hardy–Sobolev constants is studied and the existence of positive solutions is established.</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2011.10.033</identifier><identifier>CODEN: AMHCBQ</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Calculus of variations and optimal control ; Computation ; Constants ; Critical exponent ; Exact sciences and technology ; Exponents ; Hardy inequality ; Mathematical analysis ; Mathematical models ; Mathematics ; Nonlinear algebraic and transcendental equations ; Numerical analysis ; Numerical analysis. Scientific computation ; Ordinary differential equations ; Partial differential equations ; Sciences and techniques of general use ; Semilinear elliptic system ; Solution ; Variational methods</subject><ispartof>Applied mathematics and computation, 2011-12, Vol.218 (8), p.4514-4522</ispartof><rights>2011 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-6e1056010b11afe721f52d47507642647ed27dbfbdaf784028db2bc9d8b2f2f33</citedby><cites>FETCH-LOGICAL-c360t-6e1056010b11afe721f52d47507642647ed27dbfbdaf784028db2bc9d8b2f2f33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.amc.2011.10.033$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25313154$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kang, Dongsheng</creatorcontrib><title>Semilinear systems involving multiple critical Hardy–Sobolev exponents and three singular points</title><title>Applied mathematics and computation</title><description>In this paper, a semilinear system of elliptic equations is investigated, which involves multiple critical exponents and singular points. By variational methods and analytic techniques, the related best Hardy–Sobolev constants is studied and the existence of positive solutions is established.</description><subject>Calculus of variations and optimal control</subject><subject>Computation</subject><subject>Constants</subject><subject>Critical exponent</subject><subject>Exact sciences and technology</subject><subject>Exponents</subject><subject>Hardy inequality</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Nonlinear algebraic and transcendental equations</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Ordinary differential equations</subject><subject>Partial differential equations</subject><subject>Sciences and techniques of general use</subject><subject>Semilinear elliptic system</subject><subject>Solution</subject><subject>Variational methods</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kMFuGyEURVHVSHWTfEB3bCplM-4DZpixuoqiJq5kqYs06xEDjxaLgSmMrXqXf8gf5kuC5SjLrBBw7n1wCPnCYMmAyW_bpRr1kgNjZb8EIT6QBetaUTWyXn0kC4CVrASA-EQ-57wFgFayekGGexyddwFVovmQZxwzdWEf_d6FP3Tc-dlNHqlObnZaebpWyRyeH5_u4xA97in-n2LAMGeqgqHz34RIc4nufCmcois3F-TMKp_x8nU9Jw-3P37frKvNr7ufN9ebSgsJcyWRQSOBwcCYsthyZhtu6rYpL625rFs0vDWDHYyybVcD78zAB70y3cAtt0Kck6tT75Tivx3muR9d1ui9Chh3uS-eoOsAallQdkJ1ijkntP2U3KjSoUBHTvbbvvjsjz6PR8VnyXx9rVe5mLBJBe3yW5A3ggnW1IX7fuKw_HXvMPVZOwwajUuo595E986UF1wXjTM</recordid><startdate>20111215</startdate><enddate>20111215</enddate><creator>Kang, Dongsheng</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20111215</creationdate><title>Semilinear systems involving multiple critical Hardy–Sobolev exponents and three singular points</title><author>Kang, Dongsheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-6e1056010b11afe721f52d47507642647ed27dbfbdaf784028db2bc9d8b2f2f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Calculus of variations and optimal control</topic><topic>Computation</topic><topic>Constants</topic><topic>Critical exponent</topic><topic>Exact sciences and technology</topic><topic>Exponents</topic><topic>Hardy inequality</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Nonlinear algebraic and transcendental equations</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Ordinary differential equations</topic><topic>Partial differential equations</topic><topic>Sciences and techniques of general use</topic><topic>Semilinear elliptic system</topic><topic>Solution</topic><topic>Variational methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Dongsheng</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Dongsheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semilinear systems involving multiple critical Hardy–Sobolev exponents and three singular points</atitle><jtitle>Applied mathematics and computation</jtitle><date>2011-12-15</date><risdate>2011</risdate><volume>218</volume><issue>8</issue><spage>4514</spage><epage>4522</epage><pages>4514-4522</pages><issn>0096-3003</issn><eissn>1873-5649</eissn><coden>AMHCBQ</coden><abstract>In this paper, a semilinear system of elliptic equations is investigated, which involves multiple critical exponents and singular points. By variational methods and analytic techniques, the related best Hardy–Sobolev constants is studied and the existence of positive solutions is established.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.amc.2011.10.033</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0096-3003
ispartof Applied mathematics and computation, 2011-12, Vol.218 (8), p.4514-4522
issn 0096-3003
1873-5649
language eng
recordid cdi_proquest_miscellaneous_1010880046
source ScienceDirect Journals (5 years ago - present)
subjects Calculus of variations and optimal control
Computation
Constants
Critical exponent
Exact sciences and technology
Exponents
Hardy inequality
Mathematical analysis
Mathematical models
Mathematics
Nonlinear algebraic and transcendental equations
Numerical analysis
Numerical analysis. Scientific computation
Ordinary differential equations
Partial differential equations
Sciences and techniques of general use
Semilinear elliptic system
Solution
Variational methods
title Semilinear systems involving multiple critical Hardy–Sobolev exponents and three singular points
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T16%3A53%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semilinear%20systems%20involving%20multiple%20critical%20Hardy%E2%80%93Sobolev%20exponents%20and%20three%20singular%20points&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Kang,%20Dongsheng&rft.date=2011-12-15&rft.volume=218&rft.issue=8&rft.spage=4514&rft.epage=4522&rft.pages=4514-4522&rft.issn=0096-3003&rft.eissn=1873-5649&rft.coden=AMHCBQ&rft_id=info:doi/10.1016/j.amc.2011.10.033&rft_dat=%3Cproquest_cross%3E1010880046%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1010880046&rft_id=info:pmid/&rft_els_id=S009630031101263X&rfr_iscdi=true