Positive periodic solutions for neutral delay ratio-dependent predator–prey model with Holling type III functional response
By using a continuation theorem based on coincidence degree theory, some new and interesting sufficient conditions are obtained for the existence of positive periodic solutions for neutral delay ratio-dependent predator–prey model with Holling type III functional response x ′ ( t ) = x ( t ) [ r ( t...
Gespeichert in:
Veröffentlicht in: | Applied mathematics and computation 2011-12, Vol.218 (8), p.4341-4348 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4348 |
---|---|
container_issue | 8 |
container_start_page | 4341 |
container_title | Applied mathematics and computation |
container_volume | 218 |
creator | Liu, Guirong Yan, Jurang |
description | By using a continuation theorem based on coincidence degree theory, some new and interesting sufficient conditions are obtained for the existence of positive periodic solutions for neutral delay ratio-dependent predator–prey model with Holling type III functional response
x
′
(
t
)
=
x
(
t
)
[
r
(
t
)
-
a
(
t
)
x
(
t
-
σ
1
)
-
ρ
x
′
(
t
-
σ
2
)
]
-
c
(
t
)
x
2
(
t
)
m
2
y
2
(
t
)
+
x
2
(
t
)
y
(
t
)
,
y
′
(
t
)
=
y
(
t
)
-
d
(
t
)
+
h
(
t
)
x
2
(
t
-
τ
(
t
)
)
m
2
y
2
(
t
-
τ
(
t
)
)
+
x
2
(
t
-
τ
(
t
)
)
.
An example is represented to illustrate the feasibility of our main results. |
doi_str_mv | 10.1016/j.amc.2011.10.009 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1010879949</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0096300311012392</els_id><sourcerecordid>1010879949</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-fad0d0bebb2023482ec9eaaab473992784c9f5a9f2f771b9ed6c2327ad5381813</originalsourceid><addsrcrecordid>eNp9kM2KVDEQhYM4YDv6AO6yEdzcNj_3L7iSwXEaBnQxs77UTSqaJp1ck9yRXgz4Dr6hT2KaHlxKLVKpfOcUOYS84WzLGe_f77dw0FvBOK_3LWPqGdnwcZBN17fqOdnUSd9IxuQL8jLnPWNs6Hm7IY9fY3bFPSBdMLlonKY5-rW4GDK1MdGAa0ngqUEPR5qgvjQGFwwGQ6FLQgMlpj-_ftf2SA-xcvSnK9_pTfTehW-0HBeku92O2jXok281S5iXugBfkQsLPuPrp_OS3F9_uru6aW6_fN5dfbxttOxZaSwYZtiM8yyYkO0oUCsEgLkdpFJiGFutbAfKCjsMfFZoei2kGMB0cuQjl5fk3dl3SfHHirlMB5c1eg8B45qnGiEbB6VaVVF-RnWKOSe005LcAdKxQieun_ZTjXo6RX0a1WCr5u2TPWQN3iYI2uV_QtFJXqur3Iczh_WvDw7TlLXDoNG4hLpMJrr_bPkLWj-XhA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1010879949</pqid></control><display><type>article</type><title>Positive periodic solutions for neutral delay ratio-dependent predator–prey model with Holling type III functional response</title><source>Access via ScienceDirect (Elsevier)</source><creator>Liu, Guirong ; Yan, Jurang</creator><creatorcontrib>Liu, Guirong ; Yan, Jurang</creatorcontrib><description>By using a continuation theorem based on coincidence degree theory, some new and interesting sufficient conditions are obtained for the existence of positive periodic solutions for neutral delay ratio-dependent predator–prey model with Holling type III functional response
x
′
(
t
)
=
x
(
t
)
[
r
(
t
)
-
a
(
t
)
x
(
t
-
σ
1
)
-
ρ
x
′
(
t
-
σ
2
)
]
-
c
(
t
)
x
2
(
t
)
m
2
y
2
(
t
)
+
x
2
(
t
)
y
(
t
)
,
y
′
(
t
)
=
y
(
t
)
-
d
(
t
)
+
h
(
t
)
x
2
(
t
-
τ
(
t
)
)
m
2
y
2
(
t
-
τ
(
t
)
)
+
x
2
(
t
-
τ
(
t
)
)
.
An example is represented to illustrate the feasibility of our main results.</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2011.10.009</identifier><identifier>CODEN: AMHCBQ</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Coincidence degree ; Computation ; Delay ; Exact sciences and technology ; Existence theorems ; Feasibility ; Mathematical analysis ; Mathematical models ; Mathematics ; Neutral ; Numerical analysis ; Numerical analysis. Scientific computation ; Operator theory ; Periodic solution ; Predator–prey model ; Ratio-dependent ; Sciences and techniques of general use ; Theorems</subject><ispartof>Applied mathematics and computation, 2011-12, Vol.218 (8), p.4341-4348</ispartof><rights>2011 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-fad0d0bebb2023482ec9eaaab473992784c9f5a9f2f771b9ed6c2327ad5381813</citedby><cites>FETCH-LOGICAL-c360t-fad0d0bebb2023482ec9eaaab473992784c9f5a9f2f771b9ed6c2327ad5381813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.amc.2011.10.009$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3552,27931,27932,46002</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25313135$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Guirong</creatorcontrib><creatorcontrib>Yan, Jurang</creatorcontrib><title>Positive periodic solutions for neutral delay ratio-dependent predator–prey model with Holling type III functional response</title><title>Applied mathematics and computation</title><description>By using a continuation theorem based on coincidence degree theory, some new and interesting sufficient conditions are obtained for the existence of positive periodic solutions for neutral delay ratio-dependent predator–prey model with Holling type III functional response
x
′
(
t
)
=
x
(
t
)
[
r
(
t
)
-
a
(
t
)
x
(
t
-
σ
1
)
-
ρ
x
′
(
t
-
σ
2
)
]
-
c
(
t
)
x
2
(
t
)
m
2
y
2
(
t
)
+
x
2
(
t
)
y
(
t
)
,
y
′
(
t
)
=
y
(
t
)
-
d
(
t
)
+
h
(
t
)
x
2
(
t
-
τ
(
t
)
)
m
2
y
2
(
t
-
τ
(
t
)
)
+
x
2
(
t
-
τ
(
t
)
)
.
An example is represented to illustrate the feasibility of our main results.</description><subject>Coincidence degree</subject><subject>Computation</subject><subject>Delay</subject><subject>Exact sciences and technology</subject><subject>Existence theorems</subject><subject>Feasibility</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Neutral</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Operator theory</subject><subject>Periodic solution</subject><subject>Predator–prey model</subject><subject>Ratio-dependent</subject><subject>Sciences and techniques of general use</subject><subject>Theorems</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kM2KVDEQhYM4YDv6AO6yEdzcNj_3L7iSwXEaBnQxs77UTSqaJp1ck9yRXgz4Dr6hT2KaHlxKLVKpfOcUOYS84WzLGe_f77dw0FvBOK_3LWPqGdnwcZBN17fqOdnUSd9IxuQL8jLnPWNs6Hm7IY9fY3bFPSBdMLlonKY5-rW4GDK1MdGAa0ngqUEPR5qgvjQGFwwGQ6FLQgMlpj-_ftf2SA-xcvSnK9_pTfTehW-0HBeku92O2jXok281S5iXugBfkQsLPuPrp_OS3F9_uru6aW6_fN5dfbxttOxZaSwYZtiM8yyYkO0oUCsEgLkdpFJiGFutbAfKCjsMfFZoei2kGMB0cuQjl5fk3dl3SfHHirlMB5c1eg8B45qnGiEbB6VaVVF-RnWKOSe005LcAdKxQieun_ZTjXo6RX0a1WCr5u2TPWQN3iYI2uV_QtFJXqur3Iczh_WvDw7TlLXDoNG4hLpMJrr_bPkLWj-XhA</recordid><startdate>20111215</startdate><enddate>20111215</enddate><creator>Liu, Guirong</creator><creator>Yan, Jurang</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20111215</creationdate><title>Positive periodic solutions for neutral delay ratio-dependent predator–prey model with Holling type III functional response</title><author>Liu, Guirong ; Yan, Jurang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-fad0d0bebb2023482ec9eaaab473992784c9f5a9f2f771b9ed6c2327ad5381813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Coincidence degree</topic><topic>Computation</topic><topic>Delay</topic><topic>Exact sciences and technology</topic><topic>Existence theorems</topic><topic>Feasibility</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Neutral</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Operator theory</topic><topic>Periodic solution</topic><topic>Predator–prey model</topic><topic>Ratio-dependent</topic><topic>Sciences and techniques of general use</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Guirong</creatorcontrib><creatorcontrib>Yan, Jurang</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Guirong</au><au>Yan, Jurang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Positive periodic solutions for neutral delay ratio-dependent predator–prey model with Holling type III functional response</atitle><jtitle>Applied mathematics and computation</jtitle><date>2011-12-15</date><risdate>2011</risdate><volume>218</volume><issue>8</issue><spage>4341</spage><epage>4348</epage><pages>4341-4348</pages><issn>0096-3003</issn><eissn>1873-5649</eissn><coden>AMHCBQ</coden><abstract>By using a continuation theorem based on coincidence degree theory, some new and interesting sufficient conditions are obtained for the existence of positive periodic solutions for neutral delay ratio-dependent predator–prey model with Holling type III functional response
x
′
(
t
)
=
x
(
t
)
[
r
(
t
)
-
a
(
t
)
x
(
t
-
σ
1
)
-
ρ
x
′
(
t
-
σ
2
)
]
-
c
(
t
)
x
2
(
t
)
m
2
y
2
(
t
)
+
x
2
(
t
)
y
(
t
)
,
y
′
(
t
)
=
y
(
t
)
-
d
(
t
)
+
h
(
t
)
x
2
(
t
-
τ
(
t
)
)
m
2
y
2
(
t
-
τ
(
t
)
)
+
x
2
(
t
-
τ
(
t
)
)
.
An example is represented to illustrate the feasibility of our main results.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.amc.2011.10.009</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0096-3003 |
ispartof | Applied mathematics and computation, 2011-12, Vol.218 (8), p.4341-4348 |
issn | 0096-3003 1873-5649 |
language | eng |
recordid | cdi_proquest_miscellaneous_1010879949 |
source | Access via ScienceDirect (Elsevier) |
subjects | Coincidence degree Computation Delay Exact sciences and technology Existence theorems Feasibility Mathematical analysis Mathematical models Mathematics Neutral Numerical analysis Numerical analysis. Scientific computation Operator theory Periodic solution Predator–prey model Ratio-dependent Sciences and techniques of general use Theorems |
title | Positive periodic solutions for neutral delay ratio-dependent predator–prey model with Holling type III functional response |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T01%3A18%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Positive%20periodic%20solutions%20for%20neutral%20delay%20ratio-dependent%20predator%E2%80%93prey%20model%20with%20Holling%20type%20III%20functional%20response&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Liu,%20Guirong&rft.date=2011-12-15&rft.volume=218&rft.issue=8&rft.spage=4341&rft.epage=4348&rft.pages=4341-4348&rft.issn=0096-3003&rft.eissn=1873-5649&rft.coden=AMHCBQ&rft_id=info:doi/10.1016/j.amc.2011.10.009&rft_dat=%3Cproquest_cross%3E1010879949%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1010879949&rft_id=info:pmid/&rft_els_id=S0096300311012392&rfr_iscdi=true |