Positive periodic solutions for neutral delay ratio-dependent predator–prey model with Holling type III functional response

By using a continuation theorem based on coincidence degree theory, some new and interesting sufficient conditions are obtained for the existence of positive periodic solutions for neutral delay ratio-dependent predator–prey model with Holling type III functional response x ′ ( t ) = x ( t ) [ r ( t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and computation 2011-12, Vol.218 (8), p.4341-4348
Hauptverfasser: Liu, Guirong, Yan, Jurang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4348
container_issue 8
container_start_page 4341
container_title Applied mathematics and computation
container_volume 218
creator Liu, Guirong
Yan, Jurang
description By using a continuation theorem based on coincidence degree theory, some new and interesting sufficient conditions are obtained for the existence of positive periodic solutions for neutral delay ratio-dependent predator–prey model with Holling type III functional response x ′ ( t ) = x ( t ) [ r ( t ) - a ( t ) x ( t - σ 1 ) - ρ x ′ ( t - σ 2 ) ] - c ( t ) x 2 ( t ) m 2 y 2 ( t ) + x 2 ( t ) y ( t ) , y ′ ( t ) = y ( t ) - d ( t ) + h ( t ) x 2 ( t - τ ( t ) ) m 2 y 2 ( t - τ ( t ) ) + x 2 ( t - τ ( t ) ) . An example is represented to illustrate the feasibility of our main results.
doi_str_mv 10.1016/j.amc.2011.10.009
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1010879949</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0096300311012392</els_id><sourcerecordid>1010879949</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-fad0d0bebb2023482ec9eaaab473992784c9f5a9f2f771b9ed6c2327ad5381813</originalsourceid><addsrcrecordid>eNp9kM2KVDEQhYM4YDv6AO6yEdzcNj_3L7iSwXEaBnQxs77UTSqaJp1ck9yRXgz4Dr6hT2KaHlxKLVKpfOcUOYS84WzLGe_f77dw0FvBOK_3LWPqGdnwcZBN17fqOdnUSd9IxuQL8jLnPWNs6Hm7IY9fY3bFPSBdMLlonKY5-rW4GDK1MdGAa0ngqUEPR5qgvjQGFwwGQ6FLQgMlpj-_ftf2SA-xcvSnK9_pTfTehW-0HBeku92O2jXok281S5iXugBfkQsLPuPrp_OS3F9_uru6aW6_fN5dfbxttOxZaSwYZtiM8yyYkO0oUCsEgLkdpFJiGFutbAfKCjsMfFZoei2kGMB0cuQjl5fk3dl3SfHHirlMB5c1eg8B45qnGiEbB6VaVVF-RnWKOSe005LcAdKxQieun_ZTjXo6RX0a1WCr5u2TPWQN3iYI2uV_QtFJXqur3Iczh_WvDw7TlLXDoNG4hLpMJrr_bPkLWj-XhA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1010879949</pqid></control><display><type>article</type><title>Positive periodic solutions for neutral delay ratio-dependent predator–prey model with Holling type III functional response</title><source>Access via ScienceDirect (Elsevier)</source><creator>Liu, Guirong ; Yan, Jurang</creator><creatorcontrib>Liu, Guirong ; Yan, Jurang</creatorcontrib><description>By using a continuation theorem based on coincidence degree theory, some new and interesting sufficient conditions are obtained for the existence of positive periodic solutions for neutral delay ratio-dependent predator–prey model with Holling type III functional response x ′ ( t ) = x ( t ) [ r ( t ) - a ( t ) x ( t - σ 1 ) - ρ x ′ ( t - σ 2 ) ] - c ( t ) x 2 ( t ) m 2 y 2 ( t ) + x 2 ( t ) y ( t ) , y ′ ( t ) = y ( t ) - d ( t ) + h ( t ) x 2 ( t - τ ( t ) ) m 2 y 2 ( t - τ ( t ) ) + x 2 ( t - τ ( t ) ) . An example is represented to illustrate the feasibility of our main results.</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2011.10.009</identifier><identifier>CODEN: AMHCBQ</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Coincidence degree ; Computation ; Delay ; Exact sciences and technology ; Existence theorems ; Feasibility ; Mathematical analysis ; Mathematical models ; Mathematics ; Neutral ; Numerical analysis ; Numerical analysis. Scientific computation ; Operator theory ; Periodic solution ; Predator–prey model ; Ratio-dependent ; Sciences and techniques of general use ; Theorems</subject><ispartof>Applied mathematics and computation, 2011-12, Vol.218 (8), p.4341-4348</ispartof><rights>2011 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-fad0d0bebb2023482ec9eaaab473992784c9f5a9f2f771b9ed6c2327ad5381813</citedby><cites>FETCH-LOGICAL-c360t-fad0d0bebb2023482ec9eaaab473992784c9f5a9f2f771b9ed6c2327ad5381813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.amc.2011.10.009$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3552,27931,27932,46002</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25313135$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Guirong</creatorcontrib><creatorcontrib>Yan, Jurang</creatorcontrib><title>Positive periodic solutions for neutral delay ratio-dependent predator–prey model with Holling type III functional response</title><title>Applied mathematics and computation</title><description>By using a continuation theorem based on coincidence degree theory, some new and interesting sufficient conditions are obtained for the existence of positive periodic solutions for neutral delay ratio-dependent predator–prey model with Holling type III functional response x ′ ( t ) = x ( t ) [ r ( t ) - a ( t ) x ( t - σ 1 ) - ρ x ′ ( t - σ 2 ) ] - c ( t ) x 2 ( t ) m 2 y 2 ( t ) + x 2 ( t ) y ( t ) , y ′ ( t ) = y ( t ) - d ( t ) + h ( t ) x 2 ( t - τ ( t ) ) m 2 y 2 ( t - τ ( t ) ) + x 2 ( t - τ ( t ) ) . An example is represented to illustrate the feasibility of our main results.</description><subject>Coincidence degree</subject><subject>Computation</subject><subject>Delay</subject><subject>Exact sciences and technology</subject><subject>Existence theorems</subject><subject>Feasibility</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Neutral</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Operator theory</subject><subject>Periodic solution</subject><subject>Predator–prey model</subject><subject>Ratio-dependent</subject><subject>Sciences and techniques of general use</subject><subject>Theorems</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kM2KVDEQhYM4YDv6AO6yEdzcNj_3L7iSwXEaBnQxs77UTSqaJp1ck9yRXgz4Dr6hT2KaHlxKLVKpfOcUOYS84WzLGe_f77dw0FvBOK_3LWPqGdnwcZBN17fqOdnUSd9IxuQL8jLnPWNs6Hm7IY9fY3bFPSBdMLlonKY5-rW4GDK1MdGAa0ngqUEPR5qgvjQGFwwGQ6FLQgMlpj-_ftf2SA-xcvSnK9_pTfTehW-0HBeku92O2jXok281S5iXugBfkQsLPuPrp_OS3F9_uru6aW6_fN5dfbxttOxZaSwYZtiM8yyYkO0oUCsEgLkdpFJiGFutbAfKCjsMfFZoei2kGMB0cuQjl5fk3dl3SfHHirlMB5c1eg8B45qnGiEbB6VaVVF-RnWKOSe005LcAdKxQieun_ZTjXo6RX0a1WCr5u2TPWQN3iYI2uV_QtFJXqur3Iczh_WvDw7TlLXDoNG4hLpMJrr_bPkLWj-XhA</recordid><startdate>20111215</startdate><enddate>20111215</enddate><creator>Liu, Guirong</creator><creator>Yan, Jurang</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20111215</creationdate><title>Positive periodic solutions for neutral delay ratio-dependent predator–prey model with Holling type III functional response</title><author>Liu, Guirong ; Yan, Jurang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-fad0d0bebb2023482ec9eaaab473992784c9f5a9f2f771b9ed6c2327ad5381813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Coincidence degree</topic><topic>Computation</topic><topic>Delay</topic><topic>Exact sciences and technology</topic><topic>Existence theorems</topic><topic>Feasibility</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Neutral</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Operator theory</topic><topic>Periodic solution</topic><topic>Predator–prey model</topic><topic>Ratio-dependent</topic><topic>Sciences and techniques of general use</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Guirong</creatorcontrib><creatorcontrib>Yan, Jurang</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Guirong</au><au>Yan, Jurang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Positive periodic solutions for neutral delay ratio-dependent predator–prey model with Holling type III functional response</atitle><jtitle>Applied mathematics and computation</jtitle><date>2011-12-15</date><risdate>2011</risdate><volume>218</volume><issue>8</issue><spage>4341</spage><epage>4348</epage><pages>4341-4348</pages><issn>0096-3003</issn><eissn>1873-5649</eissn><coden>AMHCBQ</coden><abstract>By using a continuation theorem based on coincidence degree theory, some new and interesting sufficient conditions are obtained for the existence of positive periodic solutions for neutral delay ratio-dependent predator–prey model with Holling type III functional response x ′ ( t ) = x ( t ) [ r ( t ) - a ( t ) x ( t - σ 1 ) - ρ x ′ ( t - σ 2 ) ] - c ( t ) x 2 ( t ) m 2 y 2 ( t ) + x 2 ( t ) y ( t ) , y ′ ( t ) = y ( t ) - d ( t ) + h ( t ) x 2 ( t - τ ( t ) ) m 2 y 2 ( t - τ ( t ) ) + x 2 ( t - τ ( t ) ) . An example is represented to illustrate the feasibility of our main results.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.amc.2011.10.009</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0096-3003
ispartof Applied mathematics and computation, 2011-12, Vol.218 (8), p.4341-4348
issn 0096-3003
1873-5649
language eng
recordid cdi_proquest_miscellaneous_1010879949
source Access via ScienceDirect (Elsevier)
subjects Coincidence degree
Computation
Delay
Exact sciences and technology
Existence theorems
Feasibility
Mathematical analysis
Mathematical models
Mathematics
Neutral
Numerical analysis
Numerical analysis. Scientific computation
Operator theory
Periodic solution
Predator–prey model
Ratio-dependent
Sciences and techniques of general use
Theorems
title Positive periodic solutions for neutral delay ratio-dependent predator–prey model with Holling type III functional response
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T01%3A18%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Positive%20periodic%20solutions%20for%20neutral%20delay%20ratio-dependent%20predator%E2%80%93prey%20model%20with%20Holling%20type%20III%20functional%20response&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Liu,%20Guirong&rft.date=2011-12-15&rft.volume=218&rft.issue=8&rft.spage=4341&rft.epage=4348&rft.pages=4341-4348&rft.issn=0096-3003&rft.eissn=1873-5649&rft.coden=AMHCBQ&rft_id=info:doi/10.1016/j.amc.2011.10.009&rft_dat=%3Cproquest_cross%3E1010879949%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1010879949&rft_id=info:pmid/&rft_els_id=S0096300311012392&rfr_iscdi=true