High accuracy cubic spline finite difference approximation for the solution of one-space dimensional non-linear wave equations

In this paper, we propose a new three-level implicit nine point compact cubic spline finite difference formulation of order two in time and four in space directions, based on cubic spline approximation in x-direction and finite difference approximation in t-direction for the numerical solution of on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and computation 2011-12, Vol.218 (8), p.4234-4244
Hauptverfasser: Mohanty, R.K., Gopal, Venu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4244
container_issue 8
container_start_page 4234
container_title Applied mathematics and computation
container_volume 218
creator Mohanty, R.K.
Gopal, Venu
description In this paper, we propose a new three-level implicit nine point compact cubic spline finite difference formulation of order two in time and four in space directions, based on cubic spline approximation in x-direction and finite difference approximation in t-direction for the numerical solution of one-space dimensional second order non-linear hyperbolic partial differential equations. We describe the mathematical formulation procedure in details and also discuss how our formulation is able to handle wave equation in polar coordinates. The proposed method when applied to a linear hyperbolic equation is also shown to be unconditionally stable. Numerical results are provided to justify the usefulness of the proposed method.
doi_str_mv 10.1016/j.amc.2011.09.054
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1010879797</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0096300311012264</els_id><sourcerecordid>1010879797</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-b7c99d0993f9a9f506da9ba84c7fd2cbb875339a62dc1fc26e37a9cd1f0d029f3</originalsourceid><addsrcrecordid>eNp9kMFu1DAQhi0EEkvhAbj5gsQlYRxvkrU4oYpSpEpc4GxNJmPqVdZO7aTQC8-O0604Ih8sjb7_t-cT4q2CWoHqPhxrPFHdgFI1mBra_TOxU4deV223N8_FDsB0lQbQL8WrnI8A0HdqvxN_rv3PW4lEa0J6kLQOnmSeJx9YOh_8wnL0znHiQCxxnlP87U-4-Biki0kutyxznNbHQXQyBq7yjLTFThxyGeMkQwzVVolJ_sJ7lny3Plbk1-KFwynzm6f7Qvy4-vz98rq6-fbl6-Wnm4p0B0s19GTMCMZoZ9C4FroRzYCHPfVubGgYDn2rtcGuGUk5ajrWPRoalYMRGuP0hXh_7i3_v1s5L_bkM_E0YeC4ZlscwqE35RRUnVFKMefEzs6pbJweCrRxnT3a4tpuri0YW1yXzLunesyEk0sYyOd_wabVSqtm4z6eOS673ntONpPfzI4-MS12jP4_r_wFhkuXNA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1010879797</pqid></control><display><type>article</type><title>High accuracy cubic spline finite difference approximation for the solution of one-space dimensional non-linear wave equations</title><source>Access via ScienceDirect (Elsevier)</source><creator>Mohanty, R.K. ; Gopal, Venu</creator><creatorcontrib>Mohanty, R.K. ; Gopal, Venu</creatorcontrib><description>In this paper, we propose a new three-level implicit nine point compact cubic spline finite difference formulation of order two in time and four in space directions, based on cubic spline approximation in x-direction and finite difference approximation in t-direction for the numerical solution of one-space dimensional second order non-linear hyperbolic partial differential equations. We describe the mathematical formulation procedure in details and also discuss how our formulation is able to handle wave equation in polar coordinates. The proposed method when applied to a linear hyperbolic equation is also shown to be unconditionally stable. Numerical results are provided to justify the usefulness of the proposed method.</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2011.09.054</identifier><identifier>CODEN: AMHCBQ</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Approximation ; Cubic spline approximation ; Exact sciences and technology ; Handles ; Mathematical analysis ; Mathematical models ; Mathematics ; Maximum absolute errors ; Non-linear hyperbolic equation ; Nonlinearity ; Numerical analysis ; Numerical analysis. Scientific computation ; Partial differential equations ; Partial differential equations, boundary value problems ; Partial differential equations, initial value problems and time-dependant initial-boundary value problems ; Polar coordinates ; Sciences and techniques of general use ; Splines ; Telegraphic equation ; Vander Pol equation ; Wave equation in polar coordinates ; Wave equations</subject><ispartof>Applied mathematics and computation, 2011-12, Vol.218 (8), p.4234-4244</ispartof><rights>2011 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-b7c99d0993f9a9f506da9ba84c7fd2cbb875339a62dc1fc26e37a9cd1f0d029f3</citedby><cites>FETCH-LOGICAL-c360t-b7c99d0993f9a9f506da9ba84c7fd2cbb875339a62dc1fc26e37a9cd1f0d029f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.amc.2011.09.054$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25313124$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mohanty, R.K.</creatorcontrib><creatorcontrib>Gopal, Venu</creatorcontrib><title>High accuracy cubic spline finite difference approximation for the solution of one-space dimensional non-linear wave equations</title><title>Applied mathematics and computation</title><description>In this paper, we propose a new three-level implicit nine point compact cubic spline finite difference formulation of order two in time and four in space directions, based on cubic spline approximation in x-direction and finite difference approximation in t-direction for the numerical solution of one-space dimensional second order non-linear hyperbolic partial differential equations. We describe the mathematical formulation procedure in details and also discuss how our formulation is able to handle wave equation in polar coordinates. The proposed method when applied to a linear hyperbolic equation is also shown to be unconditionally stable. Numerical results are provided to justify the usefulness of the proposed method.</description><subject>Approximation</subject><subject>Cubic spline approximation</subject><subject>Exact sciences and technology</subject><subject>Handles</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Maximum absolute errors</subject><subject>Non-linear hyperbolic equation</subject><subject>Nonlinearity</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Partial differential equations</subject><subject>Partial differential equations, boundary value problems</subject><subject>Partial differential equations, initial value problems and time-dependant initial-boundary value problems</subject><subject>Polar coordinates</subject><subject>Sciences and techniques of general use</subject><subject>Splines</subject><subject>Telegraphic equation</subject><subject>Vander Pol equation</subject><subject>Wave equation in polar coordinates</subject><subject>Wave equations</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kMFu1DAQhi0EEkvhAbj5gsQlYRxvkrU4oYpSpEpc4GxNJmPqVdZO7aTQC8-O0604Ih8sjb7_t-cT4q2CWoHqPhxrPFHdgFI1mBra_TOxU4deV223N8_FDsB0lQbQL8WrnI8A0HdqvxN_rv3PW4lEa0J6kLQOnmSeJx9YOh_8wnL0znHiQCxxnlP87U-4-Biki0kutyxznNbHQXQyBq7yjLTFThxyGeMkQwzVVolJ_sJ7lny3Plbk1-KFwynzm6f7Qvy4-vz98rq6-fbl6-Wnm4p0B0s19GTMCMZoZ9C4FroRzYCHPfVubGgYDn2rtcGuGUk5ajrWPRoalYMRGuP0hXh_7i3_v1s5L_bkM_E0YeC4ZlscwqE35RRUnVFKMefEzs6pbJweCrRxnT3a4tpuri0YW1yXzLunesyEk0sYyOd_wabVSqtm4z6eOS673ntONpPfzI4-MS12jP4_r_wFhkuXNA</recordid><startdate>20111215</startdate><enddate>20111215</enddate><creator>Mohanty, R.K.</creator><creator>Gopal, Venu</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20111215</creationdate><title>High accuracy cubic spline finite difference approximation for the solution of one-space dimensional non-linear wave equations</title><author>Mohanty, R.K. ; Gopal, Venu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-b7c99d0993f9a9f506da9ba84c7fd2cbb875339a62dc1fc26e37a9cd1f0d029f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Approximation</topic><topic>Cubic spline approximation</topic><topic>Exact sciences and technology</topic><topic>Handles</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Maximum absolute errors</topic><topic>Non-linear hyperbolic equation</topic><topic>Nonlinearity</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Partial differential equations</topic><topic>Partial differential equations, boundary value problems</topic><topic>Partial differential equations, initial value problems and time-dependant initial-boundary value problems</topic><topic>Polar coordinates</topic><topic>Sciences and techniques of general use</topic><topic>Splines</topic><topic>Telegraphic equation</topic><topic>Vander Pol equation</topic><topic>Wave equation in polar coordinates</topic><topic>Wave equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohanty, R.K.</creatorcontrib><creatorcontrib>Gopal, Venu</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohanty, R.K.</au><au>Gopal, Venu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High accuracy cubic spline finite difference approximation for the solution of one-space dimensional non-linear wave equations</atitle><jtitle>Applied mathematics and computation</jtitle><date>2011-12-15</date><risdate>2011</risdate><volume>218</volume><issue>8</issue><spage>4234</spage><epage>4244</epage><pages>4234-4244</pages><issn>0096-3003</issn><eissn>1873-5649</eissn><coden>AMHCBQ</coden><abstract>In this paper, we propose a new three-level implicit nine point compact cubic spline finite difference formulation of order two in time and four in space directions, based on cubic spline approximation in x-direction and finite difference approximation in t-direction for the numerical solution of one-space dimensional second order non-linear hyperbolic partial differential equations. We describe the mathematical formulation procedure in details and also discuss how our formulation is able to handle wave equation in polar coordinates. The proposed method when applied to a linear hyperbolic equation is also shown to be unconditionally stable. Numerical results are provided to justify the usefulness of the proposed method.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.amc.2011.09.054</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0096-3003
ispartof Applied mathematics and computation, 2011-12, Vol.218 (8), p.4234-4244
issn 0096-3003
1873-5649
language eng
recordid cdi_proquest_miscellaneous_1010879797
source Access via ScienceDirect (Elsevier)
subjects Approximation
Cubic spline approximation
Exact sciences and technology
Handles
Mathematical analysis
Mathematical models
Mathematics
Maximum absolute errors
Non-linear hyperbolic equation
Nonlinearity
Numerical analysis
Numerical analysis. Scientific computation
Partial differential equations
Partial differential equations, boundary value problems
Partial differential equations, initial value problems and time-dependant initial-boundary value problems
Polar coordinates
Sciences and techniques of general use
Splines
Telegraphic equation
Vander Pol equation
Wave equation in polar coordinates
Wave equations
title High accuracy cubic spline finite difference approximation for the solution of one-space dimensional non-linear wave equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T17%3A59%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20accuracy%20cubic%20spline%20finite%20difference%20approximation%20for%20the%20solution%20of%20one-space%20dimensional%20non-linear%20wave%20equations&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Mohanty,%20R.K.&rft.date=2011-12-15&rft.volume=218&rft.issue=8&rft.spage=4234&rft.epage=4244&rft.pages=4234-4244&rft.issn=0096-3003&rft.eissn=1873-5649&rft.coden=AMHCBQ&rft_id=info:doi/10.1016/j.amc.2011.09.054&rft_dat=%3Cproquest_cross%3E1010879797%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1010879797&rft_id=info:pmid/&rft_els_id=S0096300311012264&rfr_iscdi=true