The dynamic competitive recommendation algorithm in social network services

As the number of Twitter users exceeds 175 million and the scale of social network increases, it is facing with a challenge to how to help people find right people and information conveniently. For this purpose, current social network services are adopting personalized recommender systems. Existing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information sciences 2012-03, Vol.187, p.1-14
1. Verfasser: Yu, Seok Jong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14
container_issue
container_start_page 1
container_title Information sciences
container_volume 187
creator Yu, Seok Jong
description As the number of Twitter users exceeds 175 million and the scale of social network increases, it is facing with a challenge to how to help people find right people and information conveniently. For this purpose, current social network services are adopting personalized recommender systems. Existing recommendation algorithms largely depend on one of content-based algorithm, collaborative filtering, or influential ranking analysis. However, these algorithms tend to suffer from the performance fluctuation phenomenon in common whenever an active user changes, and it is due to the diversities of personal characteristics such as the local social graph size, the number of followers, or sparsity of profile content. To overcome this limitation and to provide consistent and stable recommendation in social networks, this study proposes the dynamic competitive recommendation algorithm based on the competition of multiple component algorithms. This study shows that it outperforms previous approaches through performance evaluation on actual Twitter dataset.
doi_str_mv 10.1016/j.ins.2011.10.020
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1010878988</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020025511005718</els_id><sourcerecordid>1010878988</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-a8a5056b52e49fd5f9568b5c66fc27458da7f6c48db8270175ff2a66aa54ea563</originalsourceid><addsrcrecordid>eNp9kE1PAyEQhonRxFr9Ad44etkV6MKy8WQav2ITL_VMKDtY6i5UwJr-e2nq2dPknTzvJPMgdE1JTQkVt5va-VQzQmnJNWHkBE2obFklWEdP0YSUVUUY5-foIqUNIaRphZig1-UacL_3enQGmzBuIbvsdoAjlDSC73V2wWM9fITo8nrEzuMUjNMD9pB_QvzECeLOGUiX6MzqIcHV35yi98eH5fy5Wrw9vczvF5WZzUiutNSccLHiDJrO9tx2XMgVN0JYw9qGy163VphG9ivJWkJbbi3TQmjNG9BczKbo5nh3G8PXN6SsRpcMDIP2EL6TKkKIbGUnZUHpETUxpBTBqm10o477Ah04oTaqiFMHcYdVsVQ6d8cOlB92DqJKxoE30LsiJas-uH_avxDCdwE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1010878988</pqid></control><display><type>article</type><title>The dynamic competitive recommendation algorithm in social network services</title><source>Elsevier ScienceDirect Journals</source><creator>Yu, Seok Jong</creator><creatorcontrib>Yu, Seok Jong</creatorcontrib><description>As the number of Twitter users exceeds 175 million and the scale of social network increases, it is facing with a challenge to how to help people find right people and information conveniently. For this purpose, current social network services are adopting personalized recommender systems. Existing recommendation algorithms largely depend on one of content-based algorithm, collaborative filtering, or influential ranking analysis. However, these algorithms tend to suffer from the performance fluctuation phenomenon in common whenever an active user changes, and it is due to the diversities of personal characteristics such as the local social graph size, the number of followers, or sparsity of profile content. To overcome this limitation and to provide consistent and stable recommendation in social networks, this study proposes the dynamic competitive recommendation algorithm based on the competition of multiple component algorithms. This study shows that it outperforms previous approaches through performance evaluation on actual Twitter dataset.</description><identifier>ISSN: 0020-0255</identifier><identifier>EISSN: 1872-6291</identifier><identifier>DOI: 10.1016/j.ins.2011.10.020</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Algorithms ; Dynamic tests ; Dynamics ; Filtering ; Filtration ; Fluctuation ; Graphs ; PageRank ; Recommendation algorithm ; Recommender system ; Social network service ; Social networks ; Twitter</subject><ispartof>Information sciences, 2012-03, Vol.187, p.1-14</ispartof><rights>2011 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-a8a5056b52e49fd5f9568b5c66fc27458da7f6c48db8270175ff2a66aa54ea563</citedby><cites>FETCH-LOGICAL-c330t-a8a5056b52e49fd5f9568b5c66fc27458da7f6c48db8270175ff2a66aa54ea563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0020025511005718$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Yu, Seok Jong</creatorcontrib><title>The dynamic competitive recommendation algorithm in social network services</title><title>Information sciences</title><description>As the number of Twitter users exceeds 175 million and the scale of social network increases, it is facing with a challenge to how to help people find right people and information conveniently. For this purpose, current social network services are adopting personalized recommender systems. Existing recommendation algorithms largely depend on one of content-based algorithm, collaborative filtering, or influential ranking analysis. However, these algorithms tend to suffer from the performance fluctuation phenomenon in common whenever an active user changes, and it is due to the diversities of personal characteristics such as the local social graph size, the number of followers, or sparsity of profile content. To overcome this limitation and to provide consistent and stable recommendation in social networks, this study proposes the dynamic competitive recommendation algorithm based on the competition of multiple component algorithms. This study shows that it outperforms previous approaches through performance evaluation on actual Twitter dataset.</description><subject>Algorithms</subject><subject>Dynamic tests</subject><subject>Dynamics</subject><subject>Filtering</subject><subject>Filtration</subject><subject>Fluctuation</subject><subject>Graphs</subject><subject>PageRank</subject><subject>Recommendation algorithm</subject><subject>Recommender system</subject><subject>Social network service</subject><subject>Social networks</subject><subject>Twitter</subject><issn>0020-0255</issn><issn>1872-6291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PAyEQhonRxFr9Ad44etkV6MKy8WQav2ITL_VMKDtY6i5UwJr-e2nq2dPknTzvJPMgdE1JTQkVt5va-VQzQmnJNWHkBE2obFklWEdP0YSUVUUY5-foIqUNIaRphZig1-UacL_3enQGmzBuIbvsdoAjlDSC73V2wWM9fITo8nrEzuMUjNMD9pB_QvzECeLOGUiX6MzqIcHV35yi98eH5fy5Wrw9vczvF5WZzUiutNSccLHiDJrO9tx2XMgVN0JYw9qGy163VphG9ivJWkJbbi3TQmjNG9BczKbo5nh3G8PXN6SsRpcMDIP2EL6TKkKIbGUnZUHpETUxpBTBqm10o477Ah04oTaqiFMHcYdVsVQ6d8cOlB92DqJKxoE30LsiJas-uH_avxDCdwE</recordid><startdate>20120315</startdate><enddate>20120315</enddate><creator>Yu, Seok Jong</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20120315</creationdate><title>The dynamic competitive recommendation algorithm in social network services</title><author>Yu, Seok Jong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-a8a5056b52e49fd5f9568b5c66fc27458da7f6c48db8270175ff2a66aa54ea563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Dynamic tests</topic><topic>Dynamics</topic><topic>Filtering</topic><topic>Filtration</topic><topic>Fluctuation</topic><topic>Graphs</topic><topic>PageRank</topic><topic>Recommendation algorithm</topic><topic>Recommender system</topic><topic>Social network service</topic><topic>Social networks</topic><topic>Twitter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Seok Jong</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Information sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Seok Jong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The dynamic competitive recommendation algorithm in social network services</atitle><jtitle>Information sciences</jtitle><date>2012-03-15</date><risdate>2012</risdate><volume>187</volume><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>0020-0255</issn><eissn>1872-6291</eissn><abstract>As the number of Twitter users exceeds 175 million and the scale of social network increases, it is facing with a challenge to how to help people find right people and information conveniently. For this purpose, current social network services are adopting personalized recommender systems. Existing recommendation algorithms largely depend on one of content-based algorithm, collaborative filtering, or influential ranking analysis. However, these algorithms tend to suffer from the performance fluctuation phenomenon in common whenever an active user changes, and it is due to the diversities of personal characteristics such as the local social graph size, the number of followers, or sparsity of profile content. To overcome this limitation and to provide consistent and stable recommendation in social networks, this study proposes the dynamic competitive recommendation algorithm based on the competition of multiple component algorithms. This study shows that it outperforms previous approaches through performance evaluation on actual Twitter dataset.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.ins.2011.10.020</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-0255
ispartof Information sciences, 2012-03, Vol.187, p.1-14
issn 0020-0255
1872-6291
language eng
recordid cdi_proquest_miscellaneous_1010878988
source Elsevier ScienceDirect Journals
subjects Algorithms
Dynamic tests
Dynamics
Filtering
Filtration
Fluctuation
Graphs
PageRank
Recommendation algorithm
Recommender system
Social network service
Social networks
Twitter
title The dynamic competitive recommendation algorithm in social network services
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T01%3A03%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20dynamic%20competitive%20recommendation%20algorithm%20in%20social%20network%20services&rft.jtitle=Information%20sciences&rft.au=Yu,%20Seok%20Jong&rft.date=2012-03-15&rft.volume=187&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=0020-0255&rft.eissn=1872-6291&rft_id=info:doi/10.1016/j.ins.2011.10.020&rft_dat=%3Cproquest_cross%3E1010878988%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1010878988&rft_id=info:pmid/&rft_els_id=S0020025511005718&rfr_iscdi=true