The dynamic competitive recommendation algorithm in social network services
As the number of Twitter users exceeds 175 million and the scale of social network increases, it is facing with a challenge to how to help people find right people and information conveniently. For this purpose, current social network services are adopting personalized recommender systems. Existing...
Gespeichert in:
Veröffentlicht in: | Information sciences 2012-03, Vol.187, p.1-14 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Information sciences |
container_volume | 187 |
creator | Yu, Seok Jong |
description | As the number of Twitter users exceeds 175 million and the scale of social network increases, it is facing with a challenge to how to help people find right people and information conveniently. For this purpose, current social network services are adopting personalized recommender systems. Existing recommendation algorithms largely depend on one of content-based algorithm, collaborative filtering, or influential ranking analysis. However, these algorithms tend to suffer from the performance fluctuation phenomenon in common whenever an active user changes, and it is due to the diversities of personal characteristics such as the local social graph size, the number of followers, or sparsity of profile content. To overcome this limitation and to provide consistent and stable recommendation in social networks, this study proposes the dynamic competitive recommendation algorithm based on the competition of multiple component algorithms. This study shows that it outperforms previous approaches through performance evaluation on actual Twitter dataset. |
doi_str_mv | 10.1016/j.ins.2011.10.020 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1010878988</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020025511005718</els_id><sourcerecordid>1010878988</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-a8a5056b52e49fd5f9568b5c66fc27458da7f6c48db8270175ff2a66aa54ea563</originalsourceid><addsrcrecordid>eNp9kE1PAyEQhonRxFr9Ad44etkV6MKy8WQav2ITL_VMKDtY6i5UwJr-e2nq2dPknTzvJPMgdE1JTQkVt5va-VQzQmnJNWHkBE2obFklWEdP0YSUVUUY5-foIqUNIaRphZig1-UacL_3enQGmzBuIbvsdoAjlDSC73V2wWM9fITo8nrEzuMUjNMD9pB_QvzECeLOGUiX6MzqIcHV35yi98eH5fy5Wrw9vczvF5WZzUiutNSccLHiDJrO9tx2XMgVN0JYw9qGy163VphG9ivJWkJbbi3TQmjNG9BczKbo5nh3G8PXN6SsRpcMDIP2EL6TKkKIbGUnZUHpETUxpBTBqm10o477Ah04oTaqiFMHcYdVsVQ6d8cOlB92DqJKxoE30LsiJas-uH_avxDCdwE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1010878988</pqid></control><display><type>article</type><title>The dynamic competitive recommendation algorithm in social network services</title><source>Elsevier ScienceDirect Journals</source><creator>Yu, Seok Jong</creator><creatorcontrib>Yu, Seok Jong</creatorcontrib><description>As the number of Twitter users exceeds 175 million and the scale of social network increases, it is facing with a challenge to how to help people find right people and information conveniently. For this purpose, current social network services are adopting personalized recommender systems. Existing recommendation algorithms largely depend on one of content-based algorithm, collaborative filtering, or influential ranking analysis. However, these algorithms tend to suffer from the performance fluctuation phenomenon in common whenever an active user changes, and it is due to the diversities of personal characteristics such as the local social graph size, the number of followers, or sparsity of profile content. To overcome this limitation and to provide consistent and stable recommendation in social networks, this study proposes the dynamic competitive recommendation algorithm based on the competition of multiple component algorithms. This study shows that it outperforms previous approaches through performance evaluation on actual Twitter dataset.</description><identifier>ISSN: 0020-0255</identifier><identifier>EISSN: 1872-6291</identifier><identifier>DOI: 10.1016/j.ins.2011.10.020</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Algorithms ; Dynamic tests ; Dynamics ; Filtering ; Filtration ; Fluctuation ; Graphs ; PageRank ; Recommendation algorithm ; Recommender system ; Social network service ; Social networks ; Twitter</subject><ispartof>Information sciences, 2012-03, Vol.187, p.1-14</ispartof><rights>2011 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-a8a5056b52e49fd5f9568b5c66fc27458da7f6c48db8270175ff2a66aa54ea563</citedby><cites>FETCH-LOGICAL-c330t-a8a5056b52e49fd5f9568b5c66fc27458da7f6c48db8270175ff2a66aa54ea563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0020025511005718$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Yu, Seok Jong</creatorcontrib><title>The dynamic competitive recommendation algorithm in social network services</title><title>Information sciences</title><description>As the number of Twitter users exceeds 175 million and the scale of social network increases, it is facing with a challenge to how to help people find right people and information conveniently. For this purpose, current social network services are adopting personalized recommender systems. Existing recommendation algorithms largely depend on one of content-based algorithm, collaborative filtering, or influential ranking analysis. However, these algorithms tend to suffer from the performance fluctuation phenomenon in common whenever an active user changes, and it is due to the diversities of personal characteristics such as the local social graph size, the number of followers, or sparsity of profile content. To overcome this limitation and to provide consistent and stable recommendation in social networks, this study proposes the dynamic competitive recommendation algorithm based on the competition of multiple component algorithms. This study shows that it outperforms previous approaches through performance evaluation on actual Twitter dataset.</description><subject>Algorithms</subject><subject>Dynamic tests</subject><subject>Dynamics</subject><subject>Filtering</subject><subject>Filtration</subject><subject>Fluctuation</subject><subject>Graphs</subject><subject>PageRank</subject><subject>Recommendation algorithm</subject><subject>Recommender system</subject><subject>Social network service</subject><subject>Social networks</subject><subject>Twitter</subject><issn>0020-0255</issn><issn>1872-6291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PAyEQhonRxFr9Ad44etkV6MKy8WQav2ITL_VMKDtY6i5UwJr-e2nq2dPknTzvJPMgdE1JTQkVt5va-VQzQmnJNWHkBE2obFklWEdP0YSUVUUY5-foIqUNIaRphZig1-UacL_3enQGmzBuIbvsdoAjlDSC73V2wWM9fITo8nrEzuMUjNMD9pB_QvzECeLOGUiX6MzqIcHV35yi98eH5fy5Wrw9vczvF5WZzUiutNSccLHiDJrO9tx2XMgVN0JYw9qGy163VphG9ivJWkJbbi3TQmjNG9BczKbo5nh3G8PXN6SsRpcMDIP2EL6TKkKIbGUnZUHpETUxpBTBqm10o477Ah04oTaqiFMHcYdVsVQ6d8cOlB92DqJKxoE30LsiJas-uH_avxDCdwE</recordid><startdate>20120315</startdate><enddate>20120315</enddate><creator>Yu, Seok Jong</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20120315</creationdate><title>The dynamic competitive recommendation algorithm in social network services</title><author>Yu, Seok Jong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-a8a5056b52e49fd5f9568b5c66fc27458da7f6c48db8270175ff2a66aa54ea563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Dynamic tests</topic><topic>Dynamics</topic><topic>Filtering</topic><topic>Filtration</topic><topic>Fluctuation</topic><topic>Graphs</topic><topic>PageRank</topic><topic>Recommendation algorithm</topic><topic>Recommender system</topic><topic>Social network service</topic><topic>Social networks</topic><topic>Twitter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Seok Jong</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Information sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Seok Jong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The dynamic competitive recommendation algorithm in social network services</atitle><jtitle>Information sciences</jtitle><date>2012-03-15</date><risdate>2012</risdate><volume>187</volume><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>0020-0255</issn><eissn>1872-6291</eissn><abstract>As the number of Twitter users exceeds 175 million and the scale of social network increases, it is facing with a challenge to how to help people find right people and information conveniently. For this purpose, current social network services are adopting personalized recommender systems. Existing recommendation algorithms largely depend on one of content-based algorithm, collaborative filtering, or influential ranking analysis. However, these algorithms tend to suffer from the performance fluctuation phenomenon in common whenever an active user changes, and it is due to the diversities of personal characteristics such as the local social graph size, the number of followers, or sparsity of profile content. To overcome this limitation and to provide consistent and stable recommendation in social networks, this study proposes the dynamic competitive recommendation algorithm based on the competition of multiple component algorithms. This study shows that it outperforms previous approaches through performance evaluation on actual Twitter dataset.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.ins.2011.10.020</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-0255 |
ispartof | Information sciences, 2012-03, Vol.187, p.1-14 |
issn | 0020-0255 1872-6291 |
language | eng |
recordid | cdi_proquest_miscellaneous_1010878988 |
source | Elsevier ScienceDirect Journals |
subjects | Algorithms Dynamic tests Dynamics Filtering Filtration Fluctuation Graphs PageRank Recommendation algorithm Recommender system Social network service Social networks |
title | The dynamic competitive recommendation algorithm in social network services |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T01%3A03%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20dynamic%20competitive%20recommendation%20algorithm%20in%20social%20network%20services&rft.jtitle=Information%20sciences&rft.au=Yu,%20Seok%20Jong&rft.date=2012-03-15&rft.volume=187&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=0020-0255&rft.eissn=1872-6291&rft_id=info:doi/10.1016/j.ins.2011.10.020&rft_dat=%3Cproquest_cross%3E1010878988%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1010878988&rft_id=info:pmid/&rft_els_id=S0020025511005718&rfr_iscdi=true |