Electric Field-induced dynamical evolution of spiral wave in the regular networks of Hodgkin–Huxley neurons
An additional gradient force is often used to simulate the polarization effect induced by the external field in the reaction–diffusion systems. The polarization effect of weak electric field on the regular networks of Hodgkin–Huxley neurons is measured by imposing an additive term V E on physiologic...
Gespeichert in:
Veröffentlicht in: | Applied mathematics and computation 2011-12, Vol.218 (8), p.4467-4474 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4474 |
---|---|
container_issue | 8 |
container_start_page | 4467 |
container_title | Applied mathematics and computation |
container_volume | 218 |
creator | Wang, Chun-Ni Ma, Jun Jin, Wu-Yin Wu, Ying |
description | An additional gradient force is often used to simulate the polarization effect induced by the external field in the reaction–diffusion systems. The polarization effect of weak electric field on the regular networks of Hodgkin–Huxley neurons is measured by imposing an additive term
V
E
on physiological membrane potential at the cellular level, and the dynamical evolution of spiral wave subjected to the external electric field is investigated. A statistical variable is defined to study the dynamical evolution of spiral wave due to polarization effect. In the numerical simulation, 40000 neurons placed in the 200
×
200 square array with nearest neighbor connection type. It is found that spiral wave encounters death and the networks become homogeneous when the intensity of electric field exceeds the critical value, otherwise, spiral wave keeps alive completely. On the other hand, breakup of spiral wave occurs as the intensity of electric field exceeds the critical value in the presence of weak channel noise, otherwise, spiral wave keeps robustness to the external field completely. The critical value can be detected from the abrupt changes in the curve for factors of synchronization vs. control parameter, a smaller factor of synchronization is detected when the spiral wave keeps alive. |
doi_str_mv | 10.1016/j.amc.2011.10.027 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1010877777</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0096300311012574</els_id><sourcerecordid>1010877777</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-42f073de122fc2d20540fd136edf64c0d1801d779908fce08b1765ce911ac28c3</originalsourceid><addsrcrecordid>eNp9kMFO3DAQhq2KSl0oD9CbL5V6yTK2s04iTggBi4TEhZ4jY4-pF8fe2snSvfEOfcM-CY4W9Ygvlsff_KP5CPnGYMmAybPNUg16yYGx8l4Cbz6RBWsbUa1k3R2RBUAnKwEgvpDjnDcA0EhWL8hw5VGPyWl67dCbygUzaTTU7IManFae4i76aXQx0Ghp3rpUai9qh9QFOv5CmvBp8irRgONLTM95xtbRPD278O_173r643FfPqcUQ_5KPlvlM56-3yfk5_XVw-W6uru_ub28uKu0kDBWNbfQCIOMc6u54bCqwRomJBoraw2GtcBM03QdtFYjtI-skSuNHWNK81aLE_LjkLtN8feEeewHlzV6rwLGKfdFGbTNfArKDqhOMeeEtt8mN6i0L9DMyX7TF7X9rHYuFbWl5_t7vMpFkU0qaJf_N_KVYILVbeHODxyWXXcOU5-1w1D8ulSs9ya6D6a8Adb_kEA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1010877777</pqid></control><display><type>article</type><title>Electric Field-induced dynamical evolution of spiral wave in the regular networks of Hodgkin–Huxley neurons</title><source>ScienceDirect</source><creator>Wang, Chun-Ni ; Ma, Jun ; Jin, Wu-Yin ; Wu, Ying</creator><creatorcontrib>Wang, Chun-Ni ; Ma, Jun ; Jin, Wu-Yin ; Wu, Ying</creatorcontrib><description>An additional gradient force is often used to simulate the polarization effect induced by the external field in the reaction–diffusion systems. The polarization effect of weak electric field on the regular networks of Hodgkin–Huxley neurons is measured by imposing an additive term
V
E
on physiological membrane potential at the cellular level, and the dynamical evolution of spiral wave subjected to the external electric field is investigated. A statistical variable is defined to study the dynamical evolution of spiral wave due to polarization effect. In the numerical simulation, 40000 neurons placed in the 200
×
200 square array with nearest neighbor connection type. It is found that spiral wave encounters death and the networks become homogeneous when the intensity of electric field exceeds the critical value, otherwise, spiral wave keeps alive completely. On the other hand, breakup of spiral wave occurs as the intensity of electric field exceeds the critical value in the presence of weak channel noise, otherwise, spiral wave keeps robustness to the external field completely. The critical value can be detected from the abrupt changes in the curve for factors of synchronization vs. control parameter, a smaller factor of synchronization is detected when the spiral wave keeps alive.</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2011.10.027</identifier><identifier>CODEN: AMHCBQ</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Breakup ; Channel noise ; Electric fields ; Evolution ; Exact sciences and technology ; Factor of synchronization ; Hodgkin–Huxley neurons ; Mathematical analysis ; Mathematical models ; Mathematics ; Networks ; Neurons ; Numerical analysis ; Numerical analysis. Scientific computation ; Polarization ; Regular networks ; Sciences and techniques of general use ; Spiral wave ; Spirals ; Synchronism</subject><ispartof>Applied mathematics and computation, 2011-12, Vol.218 (8), p.4467-4474</ispartof><rights>2011 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-42f073de122fc2d20540fd136edf64c0d1801d779908fce08b1765ce911ac28c3</citedby><cites>FETCH-LOGICAL-c360t-42f073de122fc2d20540fd136edf64c0d1801d779908fce08b1765ce911ac28c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0096300311012574$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25313148$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Chun-Ni</creatorcontrib><creatorcontrib>Ma, Jun</creatorcontrib><creatorcontrib>Jin, Wu-Yin</creatorcontrib><creatorcontrib>Wu, Ying</creatorcontrib><title>Electric Field-induced dynamical evolution of spiral wave in the regular networks of Hodgkin–Huxley neurons</title><title>Applied mathematics and computation</title><description>An additional gradient force is often used to simulate the polarization effect induced by the external field in the reaction–diffusion systems. The polarization effect of weak electric field on the regular networks of Hodgkin–Huxley neurons is measured by imposing an additive term
V
E
on physiological membrane potential at the cellular level, and the dynamical evolution of spiral wave subjected to the external electric field is investigated. A statistical variable is defined to study the dynamical evolution of spiral wave due to polarization effect. In the numerical simulation, 40000 neurons placed in the 200
×
200 square array with nearest neighbor connection type. It is found that spiral wave encounters death and the networks become homogeneous when the intensity of electric field exceeds the critical value, otherwise, spiral wave keeps alive completely. On the other hand, breakup of spiral wave occurs as the intensity of electric field exceeds the critical value in the presence of weak channel noise, otherwise, spiral wave keeps robustness to the external field completely. The critical value can be detected from the abrupt changes in the curve for factors of synchronization vs. control parameter, a smaller factor of synchronization is detected when the spiral wave keeps alive.</description><subject>Breakup</subject><subject>Channel noise</subject><subject>Electric fields</subject><subject>Evolution</subject><subject>Exact sciences and technology</subject><subject>Factor of synchronization</subject><subject>Hodgkin–Huxley neurons</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Networks</subject><subject>Neurons</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Polarization</subject><subject>Regular networks</subject><subject>Sciences and techniques of general use</subject><subject>Spiral wave</subject><subject>Spirals</subject><subject>Synchronism</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kMFO3DAQhq2KSl0oD9CbL5V6yTK2s04iTggBi4TEhZ4jY4-pF8fe2snSvfEOfcM-CY4W9Ygvlsff_KP5CPnGYMmAybPNUg16yYGx8l4Cbz6RBWsbUa1k3R2RBUAnKwEgvpDjnDcA0EhWL8hw5VGPyWl67dCbygUzaTTU7IManFae4i76aXQx0Ghp3rpUai9qh9QFOv5CmvBp8irRgONLTM95xtbRPD278O_173r643FfPqcUQ_5KPlvlM56-3yfk5_XVw-W6uru_ub28uKu0kDBWNbfQCIOMc6u54bCqwRomJBoraw2GtcBM03QdtFYjtI-skSuNHWNK81aLE_LjkLtN8feEeewHlzV6rwLGKfdFGbTNfArKDqhOMeeEtt8mN6i0L9DMyX7TF7X9rHYuFbWl5_t7vMpFkU0qaJf_N_KVYILVbeHODxyWXXcOU5-1w1D8ulSs9ya6D6a8Adb_kEA</recordid><startdate>20111215</startdate><enddate>20111215</enddate><creator>Wang, Chun-Ni</creator><creator>Ma, Jun</creator><creator>Jin, Wu-Yin</creator><creator>Wu, Ying</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20111215</creationdate><title>Electric Field-induced dynamical evolution of spiral wave in the regular networks of Hodgkin–Huxley neurons</title><author>Wang, Chun-Ni ; Ma, Jun ; Jin, Wu-Yin ; Wu, Ying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-42f073de122fc2d20540fd136edf64c0d1801d779908fce08b1765ce911ac28c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Breakup</topic><topic>Channel noise</topic><topic>Electric fields</topic><topic>Evolution</topic><topic>Exact sciences and technology</topic><topic>Factor of synchronization</topic><topic>Hodgkin–Huxley neurons</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Networks</topic><topic>Neurons</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Polarization</topic><topic>Regular networks</topic><topic>Sciences and techniques of general use</topic><topic>Spiral wave</topic><topic>Spirals</topic><topic>Synchronism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Chun-Ni</creatorcontrib><creatorcontrib>Ma, Jun</creatorcontrib><creatorcontrib>Jin, Wu-Yin</creatorcontrib><creatorcontrib>Wu, Ying</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Chun-Ni</au><au>Ma, Jun</au><au>Jin, Wu-Yin</au><au>Wu, Ying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electric Field-induced dynamical evolution of spiral wave in the regular networks of Hodgkin–Huxley neurons</atitle><jtitle>Applied mathematics and computation</jtitle><date>2011-12-15</date><risdate>2011</risdate><volume>218</volume><issue>8</issue><spage>4467</spage><epage>4474</epage><pages>4467-4474</pages><issn>0096-3003</issn><eissn>1873-5649</eissn><coden>AMHCBQ</coden><abstract>An additional gradient force is often used to simulate the polarization effect induced by the external field in the reaction–diffusion systems. The polarization effect of weak electric field on the regular networks of Hodgkin–Huxley neurons is measured by imposing an additive term
V
E
on physiological membrane potential at the cellular level, and the dynamical evolution of spiral wave subjected to the external electric field is investigated. A statistical variable is defined to study the dynamical evolution of spiral wave due to polarization effect. In the numerical simulation, 40000 neurons placed in the 200
×
200 square array with nearest neighbor connection type. It is found that spiral wave encounters death and the networks become homogeneous when the intensity of electric field exceeds the critical value, otherwise, spiral wave keeps alive completely. On the other hand, breakup of spiral wave occurs as the intensity of electric field exceeds the critical value in the presence of weak channel noise, otherwise, spiral wave keeps robustness to the external field completely. The critical value can be detected from the abrupt changes in the curve for factors of synchronization vs. control parameter, a smaller factor of synchronization is detected when the spiral wave keeps alive.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.amc.2011.10.027</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0096-3003 |
ispartof | Applied mathematics and computation, 2011-12, Vol.218 (8), p.4467-4474 |
issn | 0096-3003 1873-5649 |
language | eng |
recordid | cdi_proquest_miscellaneous_1010877777 |
source | ScienceDirect |
subjects | Breakup Channel noise Electric fields Evolution Exact sciences and technology Factor of synchronization Hodgkin–Huxley neurons Mathematical analysis Mathematical models Mathematics Networks Neurons Numerical analysis Numerical analysis. Scientific computation Polarization Regular networks Sciences and techniques of general use Spiral wave Spirals Synchronism |
title | Electric Field-induced dynamical evolution of spiral wave in the regular networks of Hodgkin–Huxley neurons |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T14%3A49%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electric%20Field-induced%20dynamical%20evolution%20of%20spiral%20wave%20in%20the%20regular%20networks%20of%20Hodgkin%E2%80%93Huxley%20neurons&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Wang,%20Chun-Ni&rft.date=2011-12-15&rft.volume=218&rft.issue=8&rft.spage=4467&rft.epage=4474&rft.pages=4467-4474&rft.issn=0096-3003&rft.eissn=1873-5649&rft.coden=AMHCBQ&rft_id=info:doi/10.1016/j.amc.2011.10.027&rft_dat=%3Cproquest_cross%3E1010877777%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1010877777&rft_id=info:pmid/&rft_els_id=S0096300311012574&rfr_iscdi=true |