Electric Field-induced dynamical evolution of spiral wave in the regular networks of Hodgkin–Huxley neurons

An additional gradient force is often used to simulate the polarization effect induced by the external field in the reaction–diffusion systems. The polarization effect of weak electric field on the regular networks of Hodgkin–Huxley neurons is measured by imposing an additive term V E on physiologic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and computation 2011-12, Vol.218 (8), p.4467-4474
Hauptverfasser: Wang, Chun-Ni, Ma, Jun, Jin, Wu-Yin, Wu, Ying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4474
container_issue 8
container_start_page 4467
container_title Applied mathematics and computation
container_volume 218
creator Wang, Chun-Ni
Ma, Jun
Jin, Wu-Yin
Wu, Ying
description An additional gradient force is often used to simulate the polarization effect induced by the external field in the reaction–diffusion systems. The polarization effect of weak electric field on the regular networks of Hodgkin–Huxley neurons is measured by imposing an additive term V E on physiological membrane potential at the cellular level, and the dynamical evolution of spiral wave subjected to the external electric field is investigated. A statistical variable is defined to study the dynamical evolution of spiral wave due to polarization effect. In the numerical simulation, 40000 neurons placed in the 200 × 200 square array with nearest neighbor connection type. It is found that spiral wave encounters death and the networks become homogeneous when the intensity of electric field exceeds the critical value, otherwise, spiral wave keeps alive completely. On the other hand, breakup of spiral wave occurs as the intensity of electric field exceeds the critical value in the presence of weak channel noise, otherwise, spiral wave keeps robustness to the external field completely. The critical value can be detected from the abrupt changes in the curve for factors of synchronization vs. control parameter, a smaller factor of synchronization is detected when the spiral wave keeps alive.
doi_str_mv 10.1016/j.amc.2011.10.027
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1010877777</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0096300311012574</els_id><sourcerecordid>1010877777</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-42f073de122fc2d20540fd136edf64c0d1801d779908fce08b1765ce911ac28c3</originalsourceid><addsrcrecordid>eNp9kMFO3DAQhq2KSl0oD9CbL5V6yTK2s04iTggBi4TEhZ4jY4-pF8fe2snSvfEOfcM-CY4W9Ygvlsff_KP5CPnGYMmAybPNUg16yYGx8l4Cbz6RBWsbUa1k3R2RBUAnKwEgvpDjnDcA0EhWL8hw5VGPyWl67dCbygUzaTTU7IManFae4i76aXQx0Ghp3rpUai9qh9QFOv5CmvBp8irRgONLTM95xtbRPD278O_173r643FfPqcUQ_5KPlvlM56-3yfk5_XVw-W6uru_ub28uKu0kDBWNbfQCIOMc6u54bCqwRomJBoraw2GtcBM03QdtFYjtI-skSuNHWNK81aLE_LjkLtN8feEeewHlzV6rwLGKfdFGbTNfArKDqhOMeeEtt8mN6i0L9DMyX7TF7X9rHYuFbWl5_t7vMpFkU0qaJf_N_KVYILVbeHODxyWXXcOU5-1w1D8ulSs9ya6D6a8Adb_kEA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1010877777</pqid></control><display><type>article</type><title>Electric Field-induced dynamical evolution of spiral wave in the regular networks of Hodgkin–Huxley neurons</title><source>ScienceDirect</source><creator>Wang, Chun-Ni ; Ma, Jun ; Jin, Wu-Yin ; Wu, Ying</creator><creatorcontrib>Wang, Chun-Ni ; Ma, Jun ; Jin, Wu-Yin ; Wu, Ying</creatorcontrib><description>An additional gradient force is often used to simulate the polarization effect induced by the external field in the reaction–diffusion systems. The polarization effect of weak electric field on the regular networks of Hodgkin–Huxley neurons is measured by imposing an additive term V E on physiological membrane potential at the cellular level, and the dynamical evolution of spiral wave subjected to the external electric field is investigated. A statistical variable is defined to study the dynamical evolution of spiral wave due to polarization effect. In the numerical simulation, 40000 neurons placed in the 200 × 200 square array with nearest neighbor connection type. It is found that spiral wave encounters death and the networks become homogeneous when the intensity of electric field exceeds the critical value, otherwise, spiral wave keeps alive completely. On the other hand, breakup of spiral wave occurs as the intensity of electric field exceeds the critical value in the presence of weak channel noise, otherwise, spiral wave keeps robustness to the external field completely. The critical value can be detected from the abrupt changes in the curve for factors of synchronization vs. control parameter, a smaller factor of synchronization is detected when the spiral wave keeps alive.</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2011.10.027</identifier><identifier>CODEN: AMHCBQ</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Breakup ; Channel noise ; Electric fields ; Evolution ; Exact sciences and technology ; Factor of synchronization ; Hodgkin–Huxley neurons ; Mathematical analysis ; Mathematical models ; Mathematics ; Networks ; Neurons ; Numerical analysis ; Numerical analysis. Scientific computation ; Polarization ; Regular networks ; Sciences and techniques of general use ; Spiral wave ; Spirals ; Synchronism</subject><ispartof>Applied mathematics and computation, 2011-12, Vol.218 (8), p.4467-4474</ispartof><rights>2011 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-42f073de122fc2d20540fd136edf64c0d1801d779908fce08b1765ce911ac28c3</citedby><cites>FETCH-LOGICAL-c360t-42f073de122fc2d20540fd136edf64c0d1801d779908fce08b1765ce911ac28c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0096300311012574$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25313148$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Chun-Ni</creatorcontrib><creatorcontrib>Ma, Jun</creatorcontrib><creatorcontrib>Jin, Wu-Yin</creatorcontrib><creatorcontrib>Wu, Ying</creatorcontrib><title>Electric Field-induced dynamical evolution of spiral wave in the regular networks of Hodgkin–Huxley neurons</title><title>Applied mathematics and computation</title><description>An additional gradient force is often used to simulate the polarization effect induced by the external field in the reaction–diffusion systems. The polarization effect of weak electric field on the regular networks of Hodgkin–Huxley neurons is measured by imposing an additive term V E on physiological membrane potential at the cellular level, and the dynamical evolution of spiral wave subjected to the external electric field is investigated. A statistical variable is defined to study the dynamical evolution of spiral wave due to polarization effect. In the numerical simulation, 40000 neurons placed in the 200 × 200 square array with nearest neighbor connection type. It is found that spiral wave encounters death and the networks become homogeneous when the intensity of electric field exceeds the critical value, otherwise, spiral wave keeps alive completely. On the other hand, breakup of spiral wave occurs as the intensity of electric field exceeds the critical value in the presence of weak channel noise, otherwise, spiral wave keeps robustness to the external field completely. The critical value can be detected from the abrupt changes in the curve for factors of synchronization vs. control parameter, a smaller factor of synchronization is detected when the spiral wave keeps alive.</description><subject>Breakup</subject><subject>Channel noise</subject><subject>Electric fields</subject><subject>Evolution</subject><subject>Exact sciences and technology</subject><subject>Factor of synchronization</subject><subject>Hodgkin–Huxley neurons</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Networks</subject><subject>Neurons</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Polarization</subject><subject>Regular networks</subject><subject>Sciences and techniques of general use</subject><subject>Spiral wave</subject><subject>Spirals</subject><subject>Synchronism</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kMFO3DAQhq2KSl0oD9CbL5V6yTK2s04iTggBi4TEhZ4jY4-pF8fe2snSvfEOfcM-CY4W9Ygvlsff_KP5CPnGYMmAybPNUg16yYGx8l4Cbz6RBWsbUa1k3R2RBUAnKwEgvpDjnDcA0EhWL8hw5VGPyWl67dCbygUzaTTU7IManFae4i76aXQx0Ghp3rpUai9qh9QFOv5CmvBp8irRgONLTM95xtbRPD278O_173r643FfPqcUQ_5KPlvlM56-3yfk5_XVw-W6uru_ub28uKu0kDBWNbfQCIOMc6u54bCqwRomJBoraw2GtcBM03QdtFYjtI-skSuNHWNK81aLE_LjkLtN8feEeewHlzV6rwLGKfdFGbTNfArKDqhOMeeEtt8mN6i0L9DMyX7TF7X9rHYuFbWl5_t7vMpFkU0qaJf_N_KVYILVbeHODxyWXXcOU5-1w1D8ulSs9ya6D6a8Adb_kEA</recordid><startdate>20111215</startdate><enddate>20111215</enddate><creator>Wang, Chun-Ni</creator><creator>Ma, Jun</creator><creator>Jin, Wu-Yin</creator><creator>Wu, Ying</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20111215</creationdate><title>Electric Field-induced dynamical evolution of spiral wave in the regular networks of Hodgkin–Huxley neurons</title><author>Wang, Chun-Ni ; Ma, Jun ; Jin, Wu-Yin ; Wu, Ying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-42f073de122fc2d20540fd136edf64c0d1801d779908fce08b1765ce911ac28c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Breakup</topic><topic>Channel noise</topic><topic>Electric fields</topic><topic>Evolution</topic><topic>Exact sciences and technology</topic><topic>Factor of synchronization</topic><topic>Hodgkin–Huxley neurons</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Networks</topic><topic>Neurons</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Polarization</topic><topic>Regular networks</topic><topic>Sciences and techniques of general use</topic><topic>Spiral wave</topic><topic>Spirals</topic><topic>Synchronism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Chun-Ni</creatorcontrib><creatorcontrib>Ma, Jun</creatorcontrib><creatorcontrib>Jin, Wu-Yin</creatorcontrib><creatorcontrib>Wu, Ying</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Chun-Ni</au><au>Ma, Jun</au><au>Jin, Wu-Yin</au><au>Wu, Ying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electric Field-induced dynamical evolution of spiral wave in the regular networks of Hodgkin–Huxley neurons</atitle><jtitle>Applied mathematics and computation</jtitle><date>2011-12-15</date><risdate>2011</risdate><volume>218</volume><issue>8</issue><spage>4467</spage><epage>4474</epage><pages>4467-4474</pages><issn>0096-3003</issn><eissn>1873-5649</eissn><coden>AMHCBQ</coden><abstract>An additional gradient force is often used to simulate the polarization effect induced by the external field in the reaction–diffusion systems. The polarization effect of weak electric field on the regular networks of Hodgkin–Huxley neurons is measured by imposing an additive term V E on physiological membrane potential at the cellular level, and the dynamical evolution of spiral wave subjected to the external electric field is investigated. A statistical variable is defined to study the dynamical evolution of spiral wave due to polarization effect. In the numerical simulation, 40000 neurons placed in the 200 × 200 square array with nearest neighbor connection type. It is found that spiral wave encounters death and the networks become homogeneous when the intensity of electric field exceeds the critical value, otherwise, spiral wave keeps alive completely. On the other hand, breakup of spiral wave occurs as the intensity of electric field exceeds the critical value in the presence of weak channel noise, otherwise, spiral wave keeps robustness to the external field completely. The critical value can be detected from the abrupt changes in the curve for factors of synchronization vs. control parameter, a smaller factor of synchronization is detected when the spiral wave keeps alive.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.amc.2011.10.027</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0096-3003
ispartof Applied mathematics and computation, 2011-12, Vol.218 (8), p.4467-4474
issn 0096-3003
1873-5649
language eng
recordid cdi_proquest_miscellaneous_1010877777
source ScienceDirect
subjects Breakup
Channel noise
Electric fields
Evolution
Exact sciences and technology
Factor of synchronization
Hodgkin–Huxley neurons
Mathematical analysis
Mathematical models
Mathematics
Networks
Neurons
Numerical analysis
Numerical analysis. Scientific computation
Polarization
Regular networks
Sciences and techniques of general use
Spiral wave
Spirals
Synchronism
title Electric Field-induced dynamical evolution of spiral wave in the regular networks of Hodgkin–Huxley neurons
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T14%3A49%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electric%20Field-induced%20dynamical%20evolution%20of%20spiral%20wave%20in%20the%20regular%20networks%20of%20Hodgkin%E2%80%93Huxley%20neurons&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Wang,%20Chun-Ni&rft.date=2011-12-15&rft.volume=218&rft.issue=8&rft.spage=4467&rft.epage=4474&rft.pages=4467-4474&rft.issn=0096-3003&rft.eissn=1873-5649&rft.coden=AMHCBQ&rft_id=info:doi/10.1016/j.amc.2011.10.027&rft_dat=%3Cproquest_cross%3E1010877777%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1010877777&rft_id=info:pmid/&rft_els_id=S0096300311012574&rfr_iscdi=true