BIO-MOLECULAR EVENT EXTRACTION WITH MARKOV LOGIC

This article presents a novel approach to event extraction from biological text using Markov Logic. It can be described by three design decisions: (1) instead of building a pipeline using local classifiers, we design and learn a joint probabilistic model over events in a sentence; (2) instead of dev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational intelligence 2011-11, Vol.27 (4), p.558-582
Hauptverfasser: Riedel, Sebastian, Sætre, Rune, Chun, Hong-Woo, Takagi, Toshihisa, Tsujii, Jun'ichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 582
container_issue 4
container_start_page 558
container_title Computational intelligence
container_volume 27
creator Riedel, Sebastian
Sætre, Rune
Chun, Hong-Woo
Takagi, Toshihisa
Tsujii, Jun'ichi
description This article presents a novel approach to event extraction from biological text using Markov Logic. It can be described by three design decisions: (1) instead of building a pipeline using local classifiers, we design and learn a joint probabilistic model over events in a sentence; (2) instead of developing specific inference and learning algorithms for our joint model, we apply Markov Logic, a general purpose Statistical Relation Learning language, for this task; (3) we represent events as relations over the token indices of a sentence, as opposed to structures that relate event entities to gene or protein mentions. In this article, we extend our original work by providing an error analysis for binding events. Moreover, we investigate the impact of different loss functions to precision, recall and F‐measure. Finally, we show how to extract events of different types that share the same event clue. This extension allowed us to improve our performance our performance even further, leading to the third best scores for task 1 (in close range to the second place) and the best results for task 2 with a 14% point margin.
doi_str_mv 10.1111/j.1467-8640.2011.00400.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1010874402</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1010874402</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4610-334138ea4f04070583a4c4bf331d5621bf34b193232b309fd90440a634a0ee963</originalsourceid><addsrcrecordid>eNqNkE1PwkAQhjdGExH9D40nL62z3e1ue_AATYUGaBMsYLhMCmwTKh_ahQj_3oUaDp6cy0wy7zOZPIRYFBxq6rl0KBfS9gUHxwVKHQAO4ByuSOOyuCYN8F1uy4B5t-RO6xIAKON-g0A7Tu1B2o_CUb81tKJxlGRW9J4NW2EWp4k1ibOuNWgNe-nY6qedOLwnN0W-0urhtzfJ6DXKwq593rb69pwLCjZjnDJf5bww70jwfJbzOZ8VjNGFJ1xqJj6jAXOZO2MQFIsAOIdcMJ6DUoFgTfJU3_2stl97pXe4Xuq5Wq3yjdruNVKg4EvDuCb6-CdabvfVxnyHAQgqpYmakF-H5tVW60oV-Fkt13l1NJfwZBJLPAnDkzA8mcSzSTwY9KVGv5crdfw3h2EaJ2YyvF3zS71ThwufVx8oJJMeTpIOwlS2xbT3hoL9AJN8gGM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>906177010</pqid></control><display><type>article</type><title>BIO-MOLECULAR EVENT EXTRACTION WITH MARKOV LOGIC</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Business Source Complete</source><creator>Riedel, Sebastian ; Sætre, Rune ; Chun, Hong-Woo ; Takagi, Toshihisa ; Tsujii, Jun'ichi</creator><creatorcontrib>Riedel, Sebastian ; Sætre, Rune ; Chun, Hong-Woo ; Takagi, Toshihisa ; Tsujii, Jun'ichi</creatorcontrib><description>This article presents a novel approach to event extraction from biological text using Markov Logic. It can be described by three design decisions: (1) instead of building a pipeline using local classifiers, we design and learn a joint probabilistic model over events in a sentence; (2) instead of developing specific inference and learning algorithms for our joint model, we apply Markov Logic, a general purpose Statistical Relation Learning language, for this task; (3) we represent events as relations over the token indices of a sentence, as opposed to structures that relate event entities to gene or protein mentions. In this article, we extend our original work by providing an error analysis for binding events. Moreover, we investigate the impact of different loss functions to precision, recall and F‐measure. Finally, we show how to extract events of different types that share the same event clue. This extension allowed us to improve our performance our performance even further, leading to the third best scores for task 1 (in close range to the second place) and the best results for task 2 with a 14% point margin.</description><identifier>ISSN: 0824-7935</identifier><identifier>EISSN: 1467-8640</identifier><identifier>DOI: 10.1111/j.1467-8640.2011.00400.x</identifier><language>eng</language><publisher>Malden, USA: Blackwell Publishing Inc</publisher><subject>BioNLP ; Design engineering ; event extraction ; Extraction ; Information processing ; joint inference ; Learning ; Logic ; Markov analysis ; Markov Logic ; Markov processes ; Mathematical models ; Molecular biology ; Programming languages ; Sentences ; Studies ; Tasks</subject><ispartof>Computational intelligence, 2011-11, Vol.27 (4), p.558-582</ispartof><rights>2011 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4610-334138ea4f04070583a4c4bf331d5621bf34b193232b309fd90440a634a0ee963</citedby><cites>FETCH-LOGICAL-c4610-334138ea4f04070583a4c4bf331d5621bf34b193232b309fd90440a634a0ee963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1467-8640.2011.00400.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1467-8640.2011.00400.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Riedel, Sebastian</creatorcontrib><creatorcontrib>Sætre, Rune</creatorcontrib><creatorcontrib>Chun, Hong-Woo</creatorcontrib><creatorcontrib>Takagi, Toshihisa</creatorcontrib><creatorcontrib>Tsujii, Jun'ichi</creatorcontrib><title>BIO-MOLECULAR EVENT EXTRACTION WITH MARKOV LOGIC</title><title>Computational intelligence</title><description>This article presents a novel approach to event extraction from biological text using Markov Logic. It can be described by three design decisions: (1) instead of building a pipeline using local classifiers, we design and learn a joint probabilistic model over events in a sentence; (2) instead of developing specific inference and learning algorithms for our joint model, we apply Markov Logic, a general purpose Statistical Relation Learning language, for this task; (3) we represent events as relations over the token indices of a sentence, as opposed to structures that relate event entities to gene or protein mentions. In this article, we extend our original work by providing an error analysis for binding events. Moreover, we investigate the impact of different loss functions to precision, recall and F‐measure. Finally, we show how to extract events of different types that share the same event clue. This extension allowed us to improve our performance our performance even further, leading to the third best scores for task 1 (in close range to the second place) and the best results for task 2 with a 14% point margin.</description><subject>BioNLP</subject><subject>Design engineering</subject><subject>event extraction</subject><subject>Extraction</subject><subject>Information processing</subject><subject>joint inference</subject><subject>Learning</subject><subject>Logic</subject><subject>Markov analysis</subject><subject>Markov Logic</subject><subject>Markov processes</subject><subject>Mathematical models</subject><subject>Molecular biology</subject><subject>Programming languages</subject><subject>Sentences</subject><subject>Studies</subject><subject>Tasks</subject><issn>0824-7935</issn><issn>1467-8640</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkE1PwkAQhjdGExH9D40nL62z3e1ue_AATYUGaBMsYLhMCmwTKh_ahQj_3oUaDp6cy0wy7zOZPIRYFBxq6rl0KBfS9gUHxwVKHQAO4ByuSOOyuCYN8F1uy4B5t-RO6xIAKON-g0A7Tu1B2o_CUb81tKJxlGRW9J4NW2EWp4k1ibOuNWgNe-nY6qedOLwnN0W-0urhtzfJ6DXKwq593rb69pwLCjZjnDJf5bww70jwfJbzOZ8VjNGFJ1xqJj6jAXOZO2MQFIsAOIdcMJ6DUoFgTfJU3_2stl97pXe4Xuq5Wq3yjdruNVKg4EvDuCb6-CdabvfVxnyHAQgqpYmakF-H5tVW60oV-Fkt13l1NJfwZBJLPAnDkzA8mcSzSTwY9KVGv5crdfw3h2EaJ2YyvF3zS71ThwufVx8oJJMeTpIOwlS2xbT3hoL9AJN8gGM</recordid><startdate>201111</startdate><enddate>201111</enddate><creator>Riedel, Sebastian</creator><creator>Sætre, Rune</creator><creator>Chun, Hong-Woo</creator><creator>Takagi, Toshihisa</creator><creator>Tsujii, Jun'ichi</creator><general>Blackwell Publishing Inc</general><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201111</creationdate><title>BIO-MOLECULAR EVENT EXTRACTION WITH MARKOV LOGIC</title><author>Riedel, Sebastian ; Sætre, Rune ; Chun, Hong-Woo ; Takagi, Toshihisa ; Tsujii, Jun'ichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4610-334138ea4f04070583a4c4bf331d5621bf34b193232b309fd90440a634a0ee963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>BioNLP</topic><topic>Design engineering</topic><topic>event extraction</topic><topic>Extraction</topic><topic>Information processing</topic><topic>joint inference</topic><topic>Learning</topic><topic>Logic</topic><topic>Markov analysis</topic><topic>Markov Logic</topic><topic>Markov processes</topic><topic>Mathematical models</topic><topic>Molecular biology</topic><topic>Programming languages</topic><topic>Sentences</topic><topic>Studies</topic><topic>Tasks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Riedel, Sebastian</creatorcontrib><creatorcontrib>Sætre, Rune</creatorcontrib><creatorcontrib>Chun, Hong-Woo</creatorcontrib><creatorcontrib>Takagi, Toshihisa</creatorcontrib><creatorcontrib>Tsujii, Jun'ichi</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Riedel, Sebastian</au><au>Sætre, Rune</au><au>Chun, Hong-Woo</au><au>Takagi, Toshihisa</au><au>Tsujii, Jun'ichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>BIO-MOLECULAR EVENT EXTRACTION WITH MARKOV LOGIC</atitle><jtitle>Computational intelligence</jtitle><date>2011-11</date><risdate>2011</risdate><volume>27</volume><issue>4</issue><spage>558</spage><epage>582</epage><pages>558-582</pages><issn>0824-7935</issn><eissn>1467-8640</eissn><abstract>This article presents a novel approach to event extraction from biological text using Markov Logic. It can be described by three design decisions: (1) instead of building a pipeline using local classifiers, we design and learn a joint probabilistic model over events in a sentence; (2) instead of developing specific inference and learning algorithms for our joint model, we apply Markov Logic, a general purpose Statistical Relation Learning language, for this task; (3) we represent events as relations over the token indices of a sentence, as opposed to structures that relate event entities to gene or protein mentions. In this article, we extend our original work by providing an error analysis for binding events. Moreover, we investigate the impact of different loss functions to precision, recall and F‐measure. Finally, we show how to extract events of different types that share the same event clue. This extension allowed us to improve our performance our performance even further, leading to the third best scores for task 1 (in close range to the second place) and the best results for task 2 with a 14% point margin.</abstract><cop>Malden, USA</cop><pub>Blackwell Publishing Inc</pub><doi>10.1111/j.1467-8640.2011.00400.x</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0824-7935
ispartof Computational intelligence, 2011-11, Vol.27 (4), p.558-582
issn 0824-7935
1467-8640
language eng
recordid cdi_proquest_miscellaneous_1010874402
source Wiley Online Library Journals Frontfile Complete; Business Source Complete
subjects BioNLP
Design engineering
event extraction
Extraction
Information processing
joint inference
Learning
Logic
Markov analysis
Markov Logic
Markov processes
Mathematical models
Molecular biology
Programming languages
Sentences
Studies
Tasks
title BIO-MOLECULAR EVENT EXTRACTION WITH MARKOV LOGIC
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T05%3A57%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=BIO-MOLECULAR%20EVENT%20EXTRACTION%20WITH%20MARKOV%20LOGIC&rft.jtitle=Computational%20intelligence&rft.au=Riedel,%20Sebastian&rft.date=2011-11&rft.volume=27&rft.issue=4&rft.spage=558&rft.epage=582&rft.pages=558-582&rft.issn=0824-7935&rft.eissn=1467-8640&rft_id=info:doi/10.1111/j.1467-8640.2011.00400.x&rft_dat=%3Cproquest_cross%3E1010874402%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=906177010&rft_id=info:pmid/&rfr_iscdi=true