BIO-MOLECULAR EVENT EXTRACTION WITH MARKOV LOGIC
This article presents a novel approach to event extraction from biological text using Markov Logic. It can be described by three design decisions: (1) instead of building a pipeline using local classifiers, we design and learn a joint probabilistic model over events in a sentence; (2) instead of dev...
Gespeichert in:
Veröffentlicht in: | Computational intelligence 2011-11, Vol.27 (4), p.558-582 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 582 |
---|---|
container_issue | 4 |
container_start_page | 558 |
container_title | Computational intelligence |
container_volume | 27 |
creator | Riedel, Sebastian Sætre, Rune Chun, Hong-Woo Takagi, Toshihisa Tsujii, Jun'ichi |
description | This article presents a novel approach to event extraction from biological text using Markov Logic. It can be described by three design decisions: (1) instead of building a pipeline using local classifiers, we design and learn a joint probabilistic model over events in a sentence; (2) instead of developing specific inference and learning algorithms for our joint model, we apply Markov Logic, a general purpose Statistical Relation Learning language, for this task; (3) we represent events as relations over the token indices of a sentence, as opposed to structures that relate event entities to gene or protein mentions. In this article, we extend our original work by providing an error analysis for binding events. Moreover, we investigate the impact of different loss functions to precision, recall and F‐measure. Finally, we show how to extract events of different types that share the same event clue. This extension allowed us to improve our performance our performance even further, leading to the third best scores for task 1 (in close range to the second place) and the best results for task 2 with a 14% point margin. |
doi_str_mv | 10.1111/j.1467-8640.2011.00400.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1010874402</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1010874402</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4610-334138ea4f04070583a4c4bf331d5621bf34b193232b309fd90440a634a0ee963</originalsourceid><addsrcrecordid>eNqNkE1PwkAQhjdGExH9D40nL62z3e1ue_AATYUGaBMsYLhMCmwTKh_ahQj_3oUaDp6cy0wy7zOZPIRYFBxq6rl0KBfS9gUHxwVKHQAO4ByuSOOyuCYN8F1uy4B5t-RO6xIAKON-g0A7Tu1B2o_CUb81tKJxlGRW9J4NW2EWp4k1ibOuNWgNe-nY6qedOLwnN0W-0urhtzfJ6DXKwq593rb69pwLCjZjnDJf5bww70jwfJbzOZ8VjNGFJ1xqJj6jAXOZO2MQFIsAOIdcMJ6DUoFgTfJU3_2stl97pXe4Xuq5Wq3yjdruNVKg4EvDuCb6-CdabvfVxnyHAQgqpYmakF-H5tVW60oV-Fkt13l1NJfwZBJLPAnDkzA8mcSzSTwY9KVGv5crdfw3h2EaJ2YyvF3zS71ThwufVx8oJJMeTpIOwlS2xbT3hoL9AJN8gGM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>906177010</pqid></control><display><type>article</type><title>BIO-MOLECULAR EVENT EXTRACTION WITH MARKOV LOGIC</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Business Source Complete</source><creator>Riedel, Sebastian ; Sætre, Rune ; Chun, Hong-Woo ; Takagi, Toshihisa ; Tsujii, Jun'ichi</creator><creatorcontrib>Riedel, Sebastian ; Sætre, Rune ; Chun, Hong-Woo ; Takagi, Toshihisa ; Tsujii, Jun'ichi</creatorcontrib><description>This article presents a novel approach to event extraction from biological text using Markov Logic. It can be described by three design decisions: (1) instead of building a pipeline using local classifiers, we design and learn a joint probabilistic model over events in a sentence; (2) instead of developing specific inference and learning algorithms for our joint model, we apply Markov Logic, a general purpose Statistical Relation Learning language, for this task; (3) we represent events as relations over the token indices of a sentence, as opposed to structures that relate event entities to gene or protein mentions. In this article, we extend our original work by providing an error analysis for binding events. Moreover, we investigate the impact of different loss functions to precision, recall and F‐measure. Finally, we show how to extract events of different types that share the same event clue. This extension allowed us to improve our performance our performance even further, leading to the third best scores for task 1 (in close range to the second place) and the best results for task 2 with a 14% point margin.</description><identifier>ISSN: 0824-7935</identifier><identifier>EISSN: 1467-8640</identifier><identifier>DOI: 10.1111/j.1467-8640.2011.00400.x</identifier><language>eng</language><publisher>Malden, USA: Blackwell Publishing Inc</publisher><subject>BioNLP ; Design engineering ; event extraction ; Extraction ; Information processing ; joint inference ; Learning ; Logic ; Markov analysis ; Markov Logic ; Markov processes ; Mathematical models ; Molecular biology ; Programming languages ; Sentences ; Studies ; Tasks</subject><ispartof>Computational intelligence, 2011-11, Vol.27 (4), p.558-582</ispartof><rights>2011 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4610-334138ea4f04070583a4c4bf331d5621bf34b193232b309fd90440a634a0ee963</citedby><cites>FETCH-LOGICAL-c4610-334138ea4f04070583a4c4bf331d5621bf34b193232b309fd90440a634a0ee963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1467-8640.2011.00400.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1467-8640.2011.00400.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Riedel, Sebastian</creatorcontrib><creatorcontrib>Sætre, Rune</creatorcontrib><creatorcontrib>Chun, Hong-Woo</creatorcontrib><creatorcontrib>Takagi, Toshihisa</creatorcontrib><creatorcontrib>Tsujii, Jun'ichi</creatorcontrib><title>BIO-MOLECULAR EVENT EXTRACTION WITH MARKOV LOGIC</title><title>Computational intelligence</title><description>This article presents a novel approach to event extraction from biological text using Markov Logic. It can be described by three design decisions: (1) instead of building a pipeline using local classifiers, we design and learn a joint probabilistic model over events in a sentence; (2) instead of developing specific inference and learning algorithms for our joint model, we apply Markov Logic, a general purpose Statistical Relation Learning language, for this task; (3) we represent events as relations over the token indices of a sentence, as opposed to structures that relate event entities to gene or protein mentions. In this article, we extend our original work by providing an error analysis for binding events. Moreover, we investigate the impact of different loss functions to precision, recall and F‐measure. Finally, we show how to extract events of different types that share the same event clue. This extension allowed us to improve our performance our performance even further, leading to the third best scores for task 1 (in close range to the second place) and the best results for task 2 with a 14% point margin.</description><subject>BioNLP</subject><subject>Design engineering</subject><subject>event extraction</subject><subject>Extraction</subject><subject>Information processing</subject><subject>joint inference</subject><subject>Learning</subject><subject>Logic</subject><subject>Markov analysis</subject><subject>Markov Logic</subject><subject>Markov processes</subject><subject>Mathematical models</subject><subject>Molecular biology</subject><subject>Programming languages</subject><subject>Sentences</subject><subject>Studies</subject><subject>Tasks</subject><issn>0824-7935</issn><issn>1467-8640</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkE1PwkAQhjdGExH9D40nL62z3e1ue_AATYUGaBMsYLhMCmwTKh_ahQj_3oUaDp6cy0wy7zOZPIRYFBxq6rl0KBfS9gUHxwVKHQAO4ByuSOOyuCYN8F1uy4B5t-RO6xIAKON-g0A7Tu1B2o_CUb81tKJxlGRW9J4NW2EWp4k1ibOuNWgNe-nY6qedOLwnN0W-0urhtzfJ6DXKwq593rb69pwLCjZjnDJf5bww70jwfJbzOZ8VjNGFJ1xqJj6jAXOZO2MQFIsAOIdcMJ6DUoFgTfJU3_2stl97pXe4Xuq5Wq3yjdruNVKg4EvDuCb6-CdabvfVxnyHAQgqpYmakF-H5tVW60oV-Fkt13l1NJfwZBJLPAnDkzA8mcSzSTwY9KVGv5crdfw3h2EaJ2YyvF3zS71ThwufVx8oJJMeTpIOwlS2xbT3hoL9AJN8gGM</recordid><startdate>201111</startdate><enddate>201111</enddate><creator>Riedel, Sebastian</creator><creator>Sætre, Rune</creator><creator>Chun, Hong-Woo</creator><creator>Takagi, Toshihisa</creator><creator>Tsujii, Jun'ichi</creator><general>Blackwell Publishing Inc</general><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201111</creationdate><title>BIO-MOLECULAR EVENT EXTRACTION WITH MARKOV LOGIC</title><author>Riedel, Sebastian ; Sætre, Rune ; Chun, Hong-Woo ; Takagi, Toshihisa ; Tsujii, Jun'ichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4610-334138ea4f04070583a4c4bf331d5621bf34b193232b309fd90440a634a0ee963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>BioNLP</topic><topic>Design engineering</topic><topic>event extraction</topic><topic>Extraction</topic><topic>Information processing</topic><topic>joint inference</topic><topic>Learning</topic><topic>Logic</topic><topic>Markov analysis</topic><topic>Markov Logic</topic><topic>Markov processes</topic><topic>Mathematical models</topic><topic>Molecular biology</topic><topic>Programming languages</topic><topic>Sentences</topic><topic>Studies</topic><topic>Tasks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Riedel, Sebastian</creatorcontrib><creatorcontrib>Sætre, Rune</creatorcontrib><creatorcontrib>Chun, Hong-Woo</creatorcontrib><creatorcontrib>Takagi, Toshihisa</creatorcontrib><creatorcontrib>Tsujii, Jun'ichi</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Riedel, Sebastian</au><au>Sætre, Rune</au><au>Chun, Hong-Woo</au><au>Takagi, Toshihisa</au><au>Tsujii, Jun'ichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>BIO-MOLECULAR EVENT EXTRACTION WITH MARKOV LOGIC</atitle><jtitle>Computational intelligence</jtitle><date>2011-11</date><risdate>2011</risdate><volume>27</volume><issue>4</issue><spage>558</spage><epage>582</epage><pages>558-582</pages><issn>0824-7935</issn><eissn>1467-8640</eissn><abstract>This article presents a novel approach to event extraction from biological text using Markov Logic. It can be described by three design decisions: (1) instead of building a pipeline using local classifiers, we design and learn a joint probabilistic model over events in a sentence; (2) instead of developing specific inference and learning algorithms for our joint model, we apply Markov Logic, a general purpose Statistical Relation Learning language, for this task; (3) we represent events as relations over the token indices of a sentence, as opposed to structures that relate event entities to gene or protein mentions. In this article, we extend our original work by providing an error analysis for binding events. Moreover, we investigate the impact of different loss functions to precision, recall and F‐measure. Finally, we show how to extract events of different types that share the same event clue. This extension allowed us to improve our performance our performance even further, leading to the third best scores for task 1 (in close range to the second place) and the best results for task 2 with a 14% point margin.</abstract><cop>Malden, USA</cop><pub>Blackwell Publishing Inc</pub><doi>10.1111/j.1467-8640.2011.00400.x</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0824-7935 |
ispartof | Computational intelligence, 2011-11, Vol.27 (4), p.558-582 |
issn | 0824-7935 1467-8640 |
language | eng |
recordid | cdi_proquest_miscellaneous_1010874402 |
source | Wiley Online Library Journals Frontfile Complete; Business Source Complete |
subjects | BioNLP Design engineering event extraction Extraction Information processing joint inference Learning Logic Markov analysis Markov Logic Markov processes Mathematical models Molecular biology Programming languages Sentences Studies Tasks |
title | BIO-MOLECULAR EVENT EXTRACTION WITH MARKOV LOGIC |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T05%3A57%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=BIO-MOLECULAR%20EVENT%20EXTRACTION%20WITH%20MARKOV%20LOGIC&rft.jtitle=Computational%20intelligence&rft.au=Riedel,%20Sebastian&rft.date=2011-11&rft.volume=27&rft.issue=4&rft.spage=558&rft.epage=582&rft.pages=558-582&rft.issn=0824-7935&rft.eissn=1467-8640&rft_id=info:doi/10.1111/j.1467-8640.2011.00400.x&rft_dat=%3Cproquest_cross%3E1010874402%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=906177010&rft_id=info:pmid/&rfr_iscdi=true |