Comparison of texture evolution between different thickness layers in cold rolled Al–Mg alloy
The texture evolution at different thickness layers in cold rolled AA 5052 aluminum alloy was analyzed quantitatively in terms of a simple relation between the texture volume fractions and true rolling strain. The effect of roll-gap geometry, friction between the roll and sheet and initial through-t...
Gespeichert in:
Veröffentlicht in: | Materials characterization 2011-12, Vol.62 (12), p.1188-1195 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1195 |
---|---|
container_issue | 12 |
container_start_page | 1188 |
container_title | Materials characterization |
container_volume | 62 |
creator | Chen, M.B. Li, J. Zhao, Y.M. Yuan, H. Liu, W.C. |
description | The texture evolution at different thickness layers in cold rolled AA 5052 aluminum alloy was analyzed quantitatively in terms of a simple relation between the texture volume fractions and true rolling strain. The effect of roll-gap geometry, friction between the roll and sheet and initial through-thickness texture gradient on the texture evolution during rolling was determined. The results show that the roll-gap geometry decreases the rate of texture evolution at the quarter layer in the early stage of deformation. In the case of oil as a lubricant, the very small friction between the roll and sheet slightly decreases the rate of texture evolution at the surface layer. At large strains the low rate of texture evolution at the center layer can be attributed to its strong initial cube texture.
► Texture evolution during rolling was quantified in terms of a simple relation. ► The roll-gap geometry decreases the rate of texture evolution at the quarter layer in the early stage of deformation. ► In the case of oil as a lubricant, small friction slightly decreases the rate of texture evolution at the surface layer. ► At large strains the low rate of texture evolution at the center layer is attributed to its strong initial cube texture. |
doi_str_mv | 10.1016/j.matchar.2011.10.007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1010874076</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1044580311002312</els_id><sourcerecordid>1010874076</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-f81b0f08618f877fb71a0238f434ec8ea731f53729bfc23cf81885f4dcaae1563</originalsourceid><addsrcrecordid>eNqFkM1KAzEUhQdRsFYfQchGcDM1mcxM0pWU4h9U3Og6pJkbm5qZ1CStduc7-IY-iRla3Lq6l8N37uGeLDsneEQwqa-Wo1ZGtZB-VGBCkjbCmB1kA8IZzUvCx4dpx2WZVxzT4-wkhCXGuOaEDTIxde1KehNch5xGET7j2gOCjbPraJI4h_gB0KHGaA0euojiwqi3DkJAVm7BB2Q6pJxtkHfWQoMm9ufr-_EVSWvd9jQ70tIGONvPYfZye_M8vc9nT3cP08ksV5QVMdeczLHGvCZcc8b0nBGJC8p1SUtQHCSjRFcJHc-1KqhKPOeVLhslJZCqpsPscnd35d37GkIUrQkKrJUduHUQqSjMWYlZj1Y7VHkXggctVt600m8T1HO1WIp9oaIvtJdTocl3sY-QQUmrveyUCX_moqKUsDFO3PWOg_TvxoAXQRnoFDTGg4qiceafpF8X1pBp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1010874076</pqid></control><display><type>article</type><title>Comparison of texture evolution between different thickness layers in cold rolled Al–Mg alloy</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Chen, M.B. ; Li, J. ; Zhao, Y.M. ; Yuan, H. ; Liu, W.C.</creator><creatorcontrib>Chen, M.B. ; Li, J. ; Zhao, Y.M. ; Yuan, H. ; Liu, W.C.</creatorcontrib><description>The texture evolution at different thickness layers in cold rolled AA 5052 aluminum alloy was analyzed quantitatively in terms of a simple relation between the texture volume fractions and true rolling strain. The effect of roll-gap geometry, friction between the roll and sheet and initial through-thickness texture gradient on the texture evolution during rolling was determined. The results show that the roll-gap geometry decreases the rate of texture evolution at the quarter layer in the early stage of deformation. In the case of oil as a lubricant, the very small friction between the roll and sheet slightly decreases the rate of texture evolution at the surface layer. At large strains the low rate of texture evolution at the center layer can be attributed to its strong initial cube texture.
► Texture evolution during rolling was quantified in terms of a simple relation. ► The roll-gap geometry decreases the rate of texture evolution at the quarter layer in the early stage of deformation. ► In the case of oil as a lubricant, small friction slightly decreases the rate of texture evolution at the surface layer. ► At large strains the low rate of texture evolution at the center layer is attributed to its strong initial cube texture.</description><identifier>ISSN: 1044-5803</identifier><identifier>EISSN: 1873-4189</identifier><identifier>DOI: 10.1016/j.matchar.2011.10.007</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>Aluminum ; Aluminum base alloys ; Applied sciences ; Cold rolling ; Cross-disciplinary physics: materials science; rheology ; Evolution ; Exact sciences and technology ; Forming ; Friction ; Materials science ; Metals. Metallurgy ; Phase diagrams and microstructures developed by solidification and solid-solid phase transformations ; Physics ; Production techniques ; Rolling ; Rolls ; Solidification ; Strain ; Surface layer ; Texture ; X-ray diffraction</subject><ispartof>Materials characterization, 2011-12, Vol.62 (12), p.1188-1195</ispartof><rights>2011 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-f81b0f08618f877fb71a0238f434ec8ea731f53729bfc23cf81885f4dcaae1563</citedby><cites>FETCH-LOGICAL-c372t-f81b0f08618f877fb71a0238f434ec8ea731f53729bfc23cf81885f4dcaae1563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.matchar.2011.10.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25331790$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, M.B.</creatorcontrib><creatorcontrib>Li, J.</creatorcontrib><creatorcontrib>Zhao, Y.M.</creatorcontrib><creatorcontrib>Yuan, H.</creatorcontrib><creatorcontrib>Liu, W.C.</creatorcontrib><title>Comparison of texture evolution between different thickness layers in cold rolled Al–Mg alloy</title><title>Materials characterization</title><description>The texture evolution at different thickness layers in cold rolled AA 5052 aluminum alloy was analyzed quantitatively in terms of a simple relation between the texture volume fractions and true rolling strain. The effect of roll-gap geometry, friction between the roll and sheet and initial through-thickness texture gradient on the texture evolution during rolling was determined. The results show that the roll-gap geometry decreases the rate of texture evolution at the quarter layer in the early stage of deformation. In the case of oil as a lubricant, the very small friction between the roll and sheet slightly decreases the rate of texture evolution at the surface layer. At large strains the low rate of texture evolution at the center layer can be attributed to its strong initial cube texture.
► Texture evolution during rolling was quantified in terms of a simple relation. ► The roll-gap geometry decreases the rate of texture evolution at the quarter layer in the early stage of deformation. ► In the case of oil as a lubricant, small friction slightly decreases the rate of texture evolution at the surface layer. ► At large strains the low rate of texture evolution at the center layer is attributed to its strong initial cube texture.</description><subject>Aluminum</subject><subject>Aluminum base alloys</subject><subject>Applied sciences</subject><subject>Cold rolling</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Evolution</subject><subject>Exact sciences and technology</subject><subject>Forming</subject><subject>Friction</subject><subject>Materials science</subject><subject>Metals. Metallurgy</subject><subject>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</subject><subject>Physics</subject><subject>Production techniques</subject><subject>Rolling</subject><subject>Rolls</subject><subject>Solidification</subject><subject>Strain</subject><subject>Surface layer</subject><subject>Texture</subject><subject>X-ray diffraction</subject><issn>1044-5803</issn><issn>1873-4189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KAzEUhQdRsFYfQchGcDM1mcxM0pWU4h9U3Og6pJkbm5qZ1CStduc7-IY-iRla3Lq6l8N37uGeLDsneEQwqa-Wo1ZGtZB-VGBCkjbCmB1kA8IZzUvCx4dpx2WZVxzT4-wkhCXGuOaEDTIxde1KehNch5xGET7j2gOCjbPraJI4h_gB0KHGaA0euojiwqi3DkJAVm7BB2Q6pJxtkHfWQoMm9ufr-_EVSWvd9jQ70tIGONvPYfZye_M8vc9nT3cP08ksV5QVMdeczLHGvCZcc8b0nBGJC8p1SUtQHCSjRFcJHc-1KqhKPOeVLhslJZCqpsPscnd35d37GkIUrQkKrJUduHUQqSjMWYlZj1Y7VHkXggctVt600m8T1HO1WIp9oaIvtJdTocl3sY-QQUmrveyUCX_moqKUsDFO3PWOg_TvxoAXQRnoFDTGg4qiceafpF8X1pBp</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>Chen, M.B.</creator><creator>Li, J.</creator><creator>Zhao, Y.M.</creator><creator>Yuan, H.</creator><creator>Liu, W.C.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20111201</creationdate><title>Comparison of texture evolution between different thickness layers in cold rolled Al–Mg alloy</title><author>Chen, M.B. ; Li, J. ; Zhao, Y.M. ; Yuan, H. ; Liu, W.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-f81b0f08618f877fb71a0238f434ec8ea731f53729bfc23cf81885f4dcaae1563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Aluminum</topic><topic>Aluminum base alloys</topic><topic>Applied sciences</topic><topic>Cold rolling</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Evolution</topic><topic>Exact sciences and technology</topic><topic>Forming</topic><topic>Friction</topic><topic>Materials science</topic><topic>Metals. Metallurgy</topic><topic>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</topic><topic>Physics</topic><topic>Production techniques</topic><topic>Rolling</topic><topic>Rolls</topic><topic>Solidification</topic><topic>Strain</topic><topic>Surface layer</topic><topic>Texture</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, M.B.</creatorcontrib><creatorcontrib>Li, J.</creatorcontrib><creatorcontrib>Zhao, Y.M.</creatorcontrib><creatorcontrib>Yuan, H.</creatorcontrib><creatorcontrib>Liu, W.C.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials characterization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, M.B.</au><au>Li, J.</au><au>Zhao, Y.M.</au><au>Yuan, H.</au><au>Liu, W.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of texture evolution between different thickness layers in cold rolled Al–Mg alloy</atitle><jtitle>Materials characterization</jtitle><date>2011-12-01</date><risdate>2011</risdate><volume>62</volume><issue>12</issue><spage>1188</spage><epage>1195</epage><pages>1188-1195</pages><issn>1044-5803</issn><eissn>1873-4189</eissn><abstract>The texture evolution at different thickness layers in cold rolled AA 5052 aluminum alloy was analyzed quantitatively in terms of a simple relation between the texture volume fractions and true rolling strain. The effect of roll-gap geometry, friction between the roll and sheet and initial through-thickness texture gradient on the texture evolution during rolling was determined. The results show that the roll-gap geometry decreases the rate of texture evolution at the quarter layer in the early stage of deformation. In the case of oil as a lubricant, the very small friction between the roll and sheet slightly decreases the rate of texture evolution at the surface layer. At large strains the low rate of texture evolution at the center layer can be attributed to its strong initial cube texture.
► Texture evolution during rolling was quantified in terms of a simple relation. ► The roll-gap geometry decreases the rate of texture evolution at the quarter layer in the early stage of deformation. ► In the case of oil as a lubricant, small friction slightly decreases the rate of texture evolution at the surface layer. ► At large strains the low rate of texture evolution at the center layer is attributed to its strong initial cube texture.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><doi>10.1016/j.matchar.2011.10.007</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1044-5803 |
ispartof | Materials characterization, 2011-12, Vol.62 (12), p.1188-1195 |
issn | 1044-5803 1873-4189 |
language | eng |
recordid | cdi_proquest_miscellaneous_1010874076 |
source | Elsevier ScienceDirect Journals Complete - AutoHoldings |
subjects | Aluminum Aluminum base alloys Applied sciences Cold rolling Cross-disciplinary physics: materials science rheology Evolution Exact sciences and technology Forming Friction Materials science Metals. Metallurgy Phase diagrams and microstructures developed by solidification and solid-solid phase transformations Physics Production techniques Rolling Rolls Solidification Strain Surface layer Texture X-ray diffraction |
title | Comparison of texture evolution between different thickness layers in cold rolled Al–Mg alloy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T09%3A32%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20texture%20evolution%20between%20different%20thickness%20layers%20in%20cold%20rolled%20Al%E2%80%93Mg%20alloy&rft.jtitle=Materials%20characterization&rft.au=Chen,%20M.B.&rft.date=2011-12-01&rft.volume=62&rft.issue=12&rft.spage=1188&rft.epage=1195&rft.pages=1188-1195&rft.issn=1044-5803&rft.eissn=1873-4189&rft_id=info:doi/10.1016/j.matchar.2011.10.007&rft_dat=%3Cproquest_cross%3E1010874076%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1010874076&rft_id=info:pmid/&rft_els_id=S1044580311002312&rfr_iscdi=true |