Comparison of texture evolution between different thickness layers in cold rolled Al–Mg alloy

The texture evolution at different thickness layers in cold rolled AA 5052 aluminum alloy was analyzed quantitatively in terms of a simple relation between the texture volume fractions and true rolling strain. The effect of roll-gap geometry, friction between the roll and sheet and initial through-t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials characterization 2011-12, Vol.62 (12), p.1188-1195
Hauptverfasser: Chen, M.B., Li, J., Zhao, Y.M., Yuan, H., Liu, W.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1195
container_issue 12
container_start_page 1188
container_title Materials characterization
container_volume 62
creator Chen, M.B.
Li, J.
Zhao, Y.M.
Yuan, H.
Liu, W.C.
description The texture evolution at different thickness layers in cold rolled AA 5052 aluminum alloy was analyzed quantitatively in terms of a simple relation between the texture volume fractions and true rolling strain. The effect of roll-gap geometry, friction between the roll and sheet and initial through-thickness texture gradient on the texture evolution during rolling was determined. The results show that the roll-gap geometry decreases the rate of texture evolution at the quarter layer in the early stage of deformation. In the case of oil as a lubricant, the very small friction between the roll and sheet slightly decreases the rate of texture evolution at the surface layer. At large strains the low rate of texture evolution at the center layer can be attributed to its strong initial cube texture. ► Texture evolution during rolling was quantified in terms of a simple relation. ► The roll-gap geometry decreases the rate of texture evolution at the quarter layer in the early stage of deformation. ► In the case of oil as a lubricant, small friction slightly decreases the rate of texture evolution at the surface layer. ► At large strains the low rate of texture evolution at the center layer is attributed to its strong initial cube texture.
doi_str_mv 10.1016/j.matchar.2011.10.007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1010874076</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1044580311002312</els_id><sourcerecordid>1010874076</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-f81b0f08618f877fb71a0238f434ec8ea731f53729bfc23cf81885f4dcaae1563</originalsourceid><addsrcrecordid>eNqFkM1KAzEUhQdRsFYfQchGcDM1mcxM0pWU4h9U3Og6pJkbm5qZ1CStduc7-IY-iRla3Lq6l8N37uGeLDsneEQwqa-Wo1ZGtZB-VGBCkjbCmB1kA8IZzUvCx4dpx2WZVxzT4-wkhCXGuOaEDTIxde1KehNch5xGET7j2gOCjbPraJI4h_gB0KHGaA0euojiwqi3DkJAVm7BB2Q6pJxtkHfWQoMm9ufr-_EVSWvd9jQ70tIGONvPYfZye_M8vc9nT3cP08ksV5QVMdeczLHGvCZcc8b0nBGJC8p1SUtQHCSjRFcJHc-1KqhKPOeVLhslJZCqpsPscnd35d37GkIUrQkKrJUduHUQqSjMWYlZj1Y7VHkXggctVt600m8T1HO1WIp9oaIvtJdTocl3sY-QQUmrveyUCX_moqKUsDFO3PWOg_TvxoAXQRnoFDTGg4qiceafpF8X1pBp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1010874076</pqid></control><display><type>article</type><title>Comparison of texture evolution between different thickness layers in cold rolled Al–Mg alloy</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Chen, M.B. ; Li, J. ; Zhao, Y.M. ; Yuan, H. ; Liu, W.C.</creator><creatorcontrib>Chen, M.B. ; Li, J. ; Zhao, Y.M. ; Yuan, H. ; Liu, W.C.</creatorcontrib><description>The texture evolution at different thickness layers in cold rolled AA 5052 aluminum alloy was analyzed quantitatively in terms of a simple relation between the texture volume fractions and true rolling strain. The effect of roll-gap geometry, friction between the roll and sheet and initial through-thickness texture gradient on the texture evolution during rolling was determined. The results show that the roll-gap geometry decreases the rate of texture evolution at the quarter layer in the early stage of deformation. In the case of oil as a lubricant, the very small friction between the roll and sheet slightly decreases the rate of texture evolution at the surface layer. At large strains the low rate of texture evolution at the center layer can be attributed to its strong initial cube texture. ► Texture evolution during rolling was quantified in terms of a simple relation. ► The roll-gap geometry decreases the rate of texture evolution at the quarter layer in the early stage of deformation. ► In the case of oil as a lubricant, small friction slightly decreases the rate of texture evolution at the surface layer. ► At large strains the low rate of texture evolution at the center layer is attributed to its strong initial cube texture.</description><identifier>ISSN: 1044-5803</identifier><identifier>EISSN: 1873-4189</identifier><identifier>DOI: 10.1016/j.matchar.2011.10.007</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>Aluminum ; Aluminum base alloys ; Applied sciences ; Cold rolling ; Cross-disciplinary physics: materials science; rheology ; Evolution ; Exact sciences and technology ; Forming ; Friction ; Materials science ; Metals. Metallurgy ; Phase diagrams and microstructures developed by solidification and solid-solid phase transformations ; Physics ; Production techniques ; Rolling ; Rolls ; Solidification ; Strain ; Surface layer ; Texture ; X-ray diffraction</subject><ispartof>Materials characterization, 2011-12, Vol.62 (12), p.1188-1195</ispartof><rights>2011 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-f81b0f08618f877fb71a0238f434ec8ea731f53729bfc23cf81885f4dcaae1563</citedby><cites>FETCH-LOGICAL-c372t-f81b0f08618f877fb71a0238f434ec8ea731f53729bfc23cf81885f4dcaae1563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.matchar.2011.10.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25331790$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, M.B.</creatorcontrib><creatorcontrib>Li, J.</creatorcontrib><creatorcontrib>Zhao, Y.M.</creatorcontrib><creatorcontrib>Yuan, H.</creatorcontrib><creatorcontrib>Liu, W.C.</creatorcontrib><title>Comparison of texture evolution between different thickness layers in cold rolled Al–Mg alloy</title><title>Materials characterization</title><description>The texture evolution at different thickness layers in cold rolled AA 5052 aluminum alloy was analyzed quantitatively in terms of a simple relation between the texture volume fractions and true rolling strain. The effect of roll-gap geometry, friction between the roll and sheet and initial through-thickness texture gradient on the texture evolution during rolling was determined. The results show that the roll-gap geometry decreases the rate of texture evolution at the quarter layer in the early stage of deformation. In the case of oil as a lubricant, the very small friction between the roll and sheet slightly decreases the rate of texture evolution at the surface layer. At large strains the low rate of texture evolution at the center layer can be attributed to its strong initial cube texture. ► Texture evolution during rolling was quantified in terms of a simple relation. ► The roll-gap geometry decreases the rate of texture evolution at the quarter layer in the early stage of deformation. ► In the case of oil as a lubricant, small friction slightly decreases the rate of texture evolution at the surface layer. ► At large strains the low rate of texture evolution at the center layer is attributed to its strong initial cube texture.</description><subject>Aluminum</subject><subject>Aluminum base alloys</subject><subject>Applied sciences</subject><subject>Cold rolling</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Evolution</subject><subject>Exact sciences and technology</subject><subject>Forming</subject><subject>Friction</subject><subject>Materials science</subject><subject>Metals. Metallurgy</subject><subject>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</subject><subject>Physics</subject><subject>Production techniques</subject><subject>Rolling</subject><subject>Rolls</subject><subject>Solidification</subject><subject>Strain</subject><subject>Surface layer</subject><subject>Texture</subject><subject>X-ray diffraction</subject><issn>1044-5803</issn><issn>1873-4189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KAzEUhQdRsFYfQchGcDM1mcxM0pWU4h9U3Og6pJkbm5qZ1CStduc7-IY-iRla3Lq6l8N37uGeLDsneEQwqa-Wo1ZGtZB-VGBCkjbCmB1kA8IZzUvCx4dpx2WZVxzT4-wkhCXGuOaEDTIxde1KehNch5xGET7j2gOCjbPraJI4h_gB0KHGaA0euojiwqi3DkJAVm7BB2Q6pJxtkHfWQoMm9ufr-_EVSWvd9jQ70tIGONvPYfZye_M8vc9nT3cP08ksV5QVMdeczLHGvCZcc8b0nBGJC8p1SUtQHCSjRFcJHc-1KqhKPOeVLhslJZCqpsPscnd35d37GkIUrQkKrJUduHUQqSjMWYlZj1Y7VHkXggctVt600m8T1HO1WIp9oaIvtJdTocl3sY-QQUmrveyUCX_moqKUsDFO3PWOg_TvxoAXQRnoFDTGg4qiceafpF8X1pBp</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>Chen, M.B.</creator><creator>Li, J.</creator><creator>Zhao, Y.M.</creator><creator>Yuan, H.</creator><creator>Liu, W.C.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20111201</creationdate><title>Comparison of texture evolution between different thickness layers in cold rolled Al–Mg alloy</title><author>Chen, M.B. ; Li, J. ; Zhao, Y.M. ; Yuan, H. ; Liu, W.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-f81b0f08618f877fb71a0238f434ec8ea731f53729bfc23cf81885f4dcaae1563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Aluminum</topic><topic>Aluminum base alloys</topic><topic>Applied sciences</topic><topic>Cold rolling</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Evolution</topic><topic>Exact sciences and technology</topic><topic>Forming</topic><topic>Friction</topic><topic>Materials science</topic><topic>Metals. Metallurgy</topic><topic>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</topic><topic>Physics</topic><topic>Production techniques</topic><topic>Rolling</topic><topic>Rolls</topic><topic>Solidification</topic><topic>Strain</topic><topic>Surface layer</topic><topic>Texture</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, M.B.</creatorcontrib><creatorcontrib>Li, J.</creatorcontrib><creatorcontrib>Zhao, Y.M.</creatorcontrib><creatorcontrib>Yuan, H.</creatorcontrib><creatorcontrib>Liu, W.C.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials characterization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, M.B.</au><au>Li, J.</au><au>Zhao, Y.M.</au><au>Yuan, H.</au><au>Liu, W.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of texture evolution between different thickness layers in cold rolled Al–Mg alloy</atitle><jtitle>Materials characterization</jtitle><date>2011-12-01</date><risdate>2011</risdate><volume>62</volume><issue>12</issue><spage>1188</spage><epage>1195</epage><pages>1188-1195</pages><issn>1044-5803</issn><eissn>1873-4189</eissn><abstract>The texture evolution at different thickness layers in cold rolled AA 5052 aluminum alloy was analyzed quantitatively in terms of a simple relation between the texture volume fractions and true rolling strain. The effect of roll-gap geometry, friction between the roll and sheet and initial through-thickness texture gradient on the texture evolution during rolling was determined. The results show that the roll-gap geometry decreases the rate of texture evolution at the quarter layer in the early stage of deformation. In the case of oil as a lubricant, the very small friction between the roll and sheet slightly decreases the rate of texture evolution at the surface layer. At large strains the low rate of texture evolution at the center layer can be attributed to its strong initial cube texture. ► Texture evolution during rolling was quantified in terms of a simple relation. ► The roll-gap geometry decreases the rate of texture evolution at the quarter layer in the early stage of deformation. ► In the case of oil as a lubricant, small friction slightly decreases the rate of texture evolution at the surface layer. ► At large strains the low rate of texture evolution at the center layer is attributed to its strong initial cube texture.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><doi>10.1016/j.matchar.2011.10.007</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1044-5803
ispartof Materials characterization, 2011-12, Vol.62 (12), p.1188-1195
issn 1044-5803
1873-4189
language eng
recordid cdi_proquest_miscellaneous_1010874076
source Elsevier ScienceDirect Journals Complete - AutoHoldings
subjects Aluminum
Aluminum base alloys
Applied sciences
Cold rolling
Cross-disciplinary physics: materials science
rheology
Evolution
Exact sciences and technology
Forming
Friction
Materials science
Metals. Metallurgy
Phase diagrams and microstructures developed by solidification and solid-solid phase transformations
Physics
Production techniques
Rolling
Rolls
Solidification
Strain
Surface layer
Texture
X-ray diffraction
title Comparison of texture evolution between different thickness layers in cold rolled Al–Mg alloy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T09%3A32%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20texture%20evolution%20between%20different%20thickness%20layers%20in%20cold%20rolled%20Al%E2%80%93Mg%20alloy&rft.jtitle=Materials%20characterization&rft.au=Chen,%20M.B.&rft.date=2011-12-01&rft.volume=62&rft.issue=12&rft.spage=1188&rft.epage=1195&rft.pages=1188-1195&rft.issn=1044-5803&rft.eissn=1873-4189&rft_id=info:doi/10.1016/j.matchar.2011.10.007&rft_dat=%3Cproquest_cross%3E1010874076%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1010874076&rft_id=info:pmid/&rft_els_id=S1044580311002312&rfr_iscdi=true