Stackable nonvolatile memory with ultra thin polysilicon film and low-leakage (Ti, Dy) sub(xO) sub(y) for low processing temperature and low operating voltages

We report the fabrication process as well as material and electrical characterization of ultra thin body (UTB) thin film transistors (TFTs) for stackable nonvolatile memories by using in situ phosphorous doped low-temperature polysilicon followed by the chemical mechanical polishing (CMP) process. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microelectronic engineering 2011-12, Vol.88 (12), p.3462-3465
Hauptverfasser: Lee, Jaegoo, Cha, Judy J, Barron, Sara, Muller, David A, Van Dover, RBruce, Amponsah, Ebenezer K, Hou, Tuo-Hung, Raza, Hassan, Kan, Edwin C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3465
container_issue 12
container_start_page 3462
container_title Microelectronic engineering
container_volume 88
creator Lee, Jaegoo
Cha, Judy J
Barron, Sara
Muller, David A
Van Dover, RBruce
Amponsah, Ebenezer K
Hou, Tuo-Hung
Raza, Hassan
Kan, Edwin C
description We report the fabrication process as well as material and electrical characterization of ultra thin body (UTB) thin film transistors (TFTs) for stackable nonvolatile memories by using in situ phosphorous doped low-temperature polysilicon followed by the chemical mechanical polishing (CMP) process. The resulting polysilicon film is about 13 nm thick with approximately 10 super(19 cm) super(-)3 doping. Root mean square surface roughness below 1 nm is achieved. Metal nanocrystals and high-k dielectric are selected for storage nodes and tunneling barriers to achieve low operating voltages. The number density and average diameter of nanocrystals embedded in the gate stack are 7.5 x 10 super(11 cm) super(-)2 and 5.8 nm, respectively. Furthermore, scanning transmission electron microscopy (STEM), convergent beam electron diffraction (CBED) and electron energy loss spectroscopy (EELS) are performed for material characterization. The dielectric constant of the (Ti, Dy) sub(xO) sub(y) film is 35, and the off-state leakage current at -1 V bias and 2.8 nm equivalent oxide thickness is 5 x 10 super(-7 A/cm) super(2). We obtain a memory window of about 0.95 V with +/-6 V program/erase voltages. Our results show that UTB TFT is a promising candidate for the three-dimensional integration in high-density nonvolatile memory applications.
doi_str_mv 10.1016/j.mee.2009.04.021
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1010871932</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1010871932</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_10108719323</originalsourceid><addsrcrecordid>eNqVkE1OwzAQhb0AifJzAHazDBIJdlKRZs2P2LGg-8oNk9bt2A4eh5LT9Kq4FA7A6s178_RpNEJcK1koqe7vNoVFLEopm0JOC1mqEzFJeZ03larPxDnzRiY_lbOJ2L9F3W71khCcd5-edDRptmh9GGFn4hoGikFDXBsHvaeRDZnWO-gMWdDuHcjvckK91SuEbG5u4XG8AR6W2dfrUZPtfDj0oA--RWbjVhDR9hh0HAL-YcD_JIdtuiQmIF-K004T49WvXojs-Wn-8JIn0seAHBfWcItE2qEfeJEeIGe1aqqy-kf1G0wbZSM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1010871932</pqid></control><display><type>article</type><title>Stackable nonvolatile memory with ultra thin polysilicon film and low-leakage (Ti, Dy) sub(xO) sub(y) for low processing temperature and low operating voltages</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Lee, Jaegoo ; Cha, Judy J ; Barron, Sara ; Muller, David A ; Van Dover, RBruce ; Amponsah, Ebenezer K ; Hou, Tuo-Hung ; Raza, Hassan ; Kan, Edwin C</creator><creatorcontrib>Lee, Jaegoo ; Cha, Judy J ; Barron, Sara ; Muller, David A ; Van Dover, RBruce ; Amponsah, Ebenezer K ; Hou, Tuo-Hung ; Raza, Hassan ; Kan, Edwin C</creatorcontrib><description>We report the fabrication process as well as material and electrical characterization of ultra thin body (UTB) thin film transistors (TFTs) for stackable nonvolatile memories by using in situ phosphorous doped low-temperature polysilicon followed by the chemical mechanical polishing (CMP) process. The resulting polysilicon film is about 13 nm thick with approximately 10 super(19 cm) super(-)3 doping. Root mean square surface roughness below 1 nm is achieved. Metal nanocrystals and high-k dielectric are selected for storage nodes and tunneling barriers to achieve low operating voltages. The number density and average diameter of nanocrystals embedded in the gate stack are 7.5 x 10 super(11 cm) super(-)2 and 5.8 nm, respectively. Furthermore, scanning transmission electron microscopy (STEM), convergent beam electron diffraction (CBED) and electron energy loss spectroscopy (EELS) are performed for material characterization. The dielectric constant of the (Ti, Dy) sub(xO) sub(y) film is 35, and the off-state leakage current at -1 V bias and 2.8 nm equivalent oxide thickness is 5 x 10 super(-7 A/cm) super(2). We obtain a memory window of about 0.95 V with +/-6 V program/erase voltages. Our results show that UTB TFT is a promising candidate for the three-dimensional integration in high-density nonvolatile memory applications.</description><identifier>ISSN: 0167-9317</identifier><identifier>DOI: 10.1016/j.mee.2009.04.021</identifier><language>eng</language><subject>Electric potential ; Electron energy loss spectroscopy ; Nanocrystals ; Scanning transmission electron microscopy ; Semiconductor devices ; Thin film transistors ; Titanium ; Voltage</subject><ispartof>Microelectronic engineering, 2011-12, Vol.88 (12), p.3462-3465</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Lee, Jaegoo</creatorcontrib><creatorcontrib>Cha, Judy J</creatorcontrib><creatorcontrib>Barron, Sara</creatorcontrib><creatorcontrib>Muller, David A</creatorcontrib><creatorcontrib>Van Dover, RBruce</creatorcontrib><creatorcontrib>Amponsah, Ebenezer K</creatorcontrib><creatorcontrib>Hou, Tuo-Hung</creatorcontrib><creatorcontrib>Raza, Hassan</creatorcontrib><creatorcontrib>Kan, Edwin C</creatorcontrib><title>Stackable nonvolatile memory with ultra thin polysilicon film and low-leakage (Ti, Dy) sub(xO) sub(y) for low processing temperature and low operating voltages</title><title>Microelectronic engineering</title><description>We report the fabrication process as well as material and electrical characterization of ultra thin body (UTB) thin film transistors (TFTs) for stackable nonvolatile memories by using in situ phosphorous doped low-temperature polysilicon followed by the chemical mechanical polishing (CMP) process. The resulting polysilicon film is about 13 nm thick with approximately 10 super(19 cm) super(-)3 doping. Root mean square surface roughness below 1 nm is achieved. Metal nanocrystals and high-k dielectric are selected for storage nodes and tunneling barriers to achieve low operating voltages. The number density and average diameter of nanocrystals embedded in the gate stack are 7.5 x 10 super(11 cm) super(-)2 and 5.8 nm, respectively. Furthermore, scanning transmission electron microscopy (STEM), convergent beam electron diffraction (CBED) and electron energy loss spectroscopy (EELS) are performed for material characterization. The dielectric constant of the (Ti, Dy) sub(xO) sub(y) film is 35, and the off-state leakage current at -1 V bias and 2.8 nm equivalent oxide thickness is 5 x 10 super(-7 A/cm) super(2). We obtain a memory window of about 0.95 V with +/-6 V program/erase voltages. Our results show that UTB TFT is a promising candidate for the three-dimensional integration in high-density nonvolatile memory applications.</description><subject>Electric potential</subject><subject>Electron energy loss spectroscopy</subject><subject>Nanocrystals</subject><subject>Scanning transmission electron microscopy</subject><subject>Semiconductor devices</subject><subject>Thin film transistors</subject><subject>Titanium</subject><subject>Voltage</subject><issn>0167-9317</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqVkE1OwzAQhb0AifJzAHazDBIJdlKRZs2P2LGg-8oNk9bt2A4eh5LT9Kq4FA7A6s178_RpNEJcK1koqe7vNoVFLEopm0JOC1mqEzFJeZ03larPxDnzRiY_lbOJ2L9F3W71khCcd5-edDRptmh9GGFn4hoGikFDXBsHvaeRDZnWO-gMWdDuHcjvckK91SuEbG5u4XG8AR6W2dfrUZPtfDj0oA--RWbjVhDR9hh0HAL-YcD_JIdtuiQmIF-K004T49WvXojs-Wn-8JIn0seAHBfWcItE2qEfeJEeIGe1aqqy-kf1G0wbZSM</recordid><startdate>20111201</startdate><enddate>20111201</enddate><creator>Lee, Jaegoo</creator><creator>Cha, Judy J</creator><creator>Barron, Sara</creator><creator>Muller, David A</creator><creator>Van Dover, RBruce</creator><creator>Amponsah, Ebenezer K</creator><creator>Hou, Tuo-Hung</creator><creator>Raza, Hassan</creator><creator>Kan, Edwin C</creator><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20111201</creationdate><title>Stackable nonvolatile memory with ultra thin polysilicon film and low-leakage (Ti, Dy) sub(xO) sub(y) for low processing temperature and low operating voltages</title><author>Lee, Jaegoo ; Cha, Judy J ; Barron, Sara ; Muller, David A ; Van Dover, RBruce ; Amponsah, Ebenezer K ; Hou, Tuo-Hung ; Raza, Hassan ; Kan, Edwin C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_10108719323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Electric potential</topic><topic>Electron energy loss spectroscopy</topic><topic>Nanocrystals</topic><topic>Scanning transmission electron microscopy</topic><topic>Semiconductor devices</topic><topic>Thin film transistors</topic><topic>Titanium</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Jaegoo</creatorcontrib><creatorcontrib>Cha, Judy J</creatorcontrib><creatorcontrib>Barron, Sara</creatorcontrib><creatorcontrib>Muller, David A</creatorcontrib><creatorcontrib>Van Dover, RBruce</creatorcontrib><creatorcontrib>Amponsah, Ebenezer K</creatorcontrib><creatorcontrib>Hou, Tuo-Hung</creatorcontrib><creatorcontrib>Raza, Hassan</creatorcontrib><creatorcontrib>Kan, Edwin C</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Microelectronic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Jaegoo</au><au>Cha, Judy J</au><au>Barron, Sara</au><au>Muller, David A</au><au>Van Dover, RBruce</au><au>Amponsah, Ebenezer K</au><au>Hou, Tuo-Hung</au><au>Raza, Hassan</au><au>Kan, Edwin C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stackable nonvolatile memory with ultra thin polysilicon film and low-leakage (Ti, Dy) sub(xO) sub(y) for low processing temperature and low operating voltages</atitle><jtitle>Microelectronic engineering</jtitle><date>2011-12-01</date><risdate>2011</risdate><volume>88</volume><issue>12</issue><spage>3462</spage><epage>3465</epage><pages>3462-3465</pages><issn>0167-9317</issn><abstract>We report the fabrication process as well as material and electrical characterization of ultra thin body (UTB) thin film transistors (TFTs) for stackable nonvolatile memories by using in situ phosphorous doped low-temperature polysilicon followed by the chemical mechanical polishing (CMP) process. The resulting polysilicon film is about 13 nm thick with approximately 10 super(19 cm) super(-)3 doping. Root mean square surface roughness below 1 nm is achieved. Metal nanocrystals and high-k dielectric are selected for storage nodes and tunneling barriers to achieve low operating voltages. The number density and average diameter of nanocrystals embedded in the gate stack are 7.5 x 10 super(11 cm) super(-)2 and 5.8 nm, respectively. Furthermore, scanning transmission electron microscopy (STEM), convergent beam electron diffraction (CBED) and electron energy loss spectroscopy (EELS) are performed for material characterization. The dielectric constant of the (Ti, Dy) sub(xO) sub(y) film is 35, and the off-state leakage current at -1 V bias and 2.8 nm equivalent oxide thickness is 5 x 10 super(-7 A/cm) super(2). We obtain a memory window of about 0.95 V with +/-6 V program/erase voltages. Our results show that UTB TFT is a promising candidate for the three-dimensional integration in high-density nonvolatile memory applications.</abstract><doi>10.1016/j.mee.2009.04.021</doi></addata></record>
fulltext fulltext
identifier ISSN: 0167-9317
ispartof Microelectronic engineering, 2011-12, Vol.88 (12), p.3462-3465
issn 0167-9317
language eng
recordid cdi_proquest_miscellaneous_1010871932
source Elsevier ScienceDirect Journals Complete
subjects Electric potential
Electron energy loss spectroscopy
Nanocrystals
Scanning transmission electron microscopy
Semiconductor devices
Thin film transistors
Titanium
Voltage
title Stackable nonvolatile memory with ultra thin polysilicon film and low-leakage (Ti, Dy) sub(xO) sub(y) for low processing temperature and low operating voltages
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T10%3A57%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stackable%20nonvolatile%20memory%20with%20ultra%20thin%20polysilicon%20film%20and%20low-leakage%20(Ti,%20Dy)%20sub(xO)%20sub(y)%20for%20low%20processing%20temperature%20and%20low%20operating%20voltages&rft.jtitle=Microelectronic%20engineering&rft.au=Lee,%20Jaegoo&rft.date=2011-12-01&rft.volume=88&rft.issue=12&rft.spage=3462&rft.epage=3465&rft.pages=3462-3465&rft.issn=0167-9317&rft_id=info:doi/10.1016/j.mee.2009.04.021&rft_dat=%3Cproquest%3E1010871932%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1010871932&rft_id=info:pmid/&rfr_iscdi=true