Nanocomposite Pyrite–Greigite Reactivity toward Se(IV)/Se(VI)

A nanopyrite/greigite composite was synthesized by reacting FeCl3 and NaHS in a ratio of 1:2 (Wei et al. 1996). Following this procedure, the obtained solid phases consisted of 30–50 nm sized particles containing 28% of greigite (Fe2+Fe3+ 2S4) and 72% pyrite (FeS2). Batch reactor experiments were pe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2012-05, Vol.46 (9), p.4869-4876
Hauptverfasser: Charlet, Laurent, Kang, Mingliang, Bardelli, Fabrizio, Kirsch, Regina, Géhin, Antoine, Grenèche, Jean-Marc, Chen, Fanrong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4876
container_issue 9
container_start_page 4869
container_title Environmental science & technology
container_volume 46
creator Charlet, Laurent
Kang, Mingliang
Bardelli, Fabrizio
Kirsch, Regina
Géhin, Antoine
Grenèche, Jean-Marc
Chen, Fanrong
description A nanopyrite/greigite composite was synthesized by reacting FeCl3 and NaHS in a ratio of 1:2 (Wei et al. 1996). Following this procedure, the obtained solid phases consisted of 30–50 nm sized particles containing 28% of greigite (Fe2+Fe3+ 2S4) and 72% pyrite (FeS2). Batch reactor experiments were performed with selenite or selenate by equilibrating suspensions containing the nanosized pyrite–greigite solid phase at different pH-values and with or without the addition of extra Fe2+. XANES-EXAFS spectroscopic techniques revealed, for the first time, the formation of ferroselite (FeSe2) as the predominant reaction product, along with elemental Se. In the present experimental conditions, at pH 6 and in equilibrium with Se0, the solution is oversaturated with respect to ferrosilite. Furthermore, thermodynamic computations show that reaction kinetics likely played a significant role in our experimental system.
doi_str_mv 10.1021/es204181q
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1010635840</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2653763161</sourcerecordid><originalsourceid>FETCH-LOGICAL-a373t-47d5af9dbaa1a70baac7c0943f6b5dc5558d2041a9b126c3de875c621c4b2f833</originalsourceid><addsrcrecordid>eNpd0MtKw0AUBuBBFFurC19ACiK0i9i5Z7ISKVoLRcVLcRcmk4mk5NLOJEp3voNv6JM4obWVrn4YPs6c8wNwiuAlghgNtMWQIoEWe6CNGIYeEwztgzaEiHgB4W8tcGTtDEKICRSHoIUxxZRC0gZX97IoVZnPS5tWuvu4NC5-vr5HRqfvzcuTlqpKP9Jq2a3KT2ni7rPujaf9gYvpuH8MDhKZWX2yzg54vb15Gd55k4fReHg98STxSeVRP2YyCeJISiR96EL5CgaUJDxisWKMibi5QQYRwlyRWAufKY6RohFOBCEd0FvNnZtyUWtbhXlqlc4yWeiytiGCCHLChDuqA8536KysTeG2axSinBGKneqvlDKltUYn4dykuTRLh8Km1XDTqrNn64l1lOt4I_9qdOBiDaRVMkuMLFRqt44JTgTnWyeV_b_V7oe_yFKJeQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1011465342</pqid></control><display><type>article</type><title>Nanocomposite Pyrite–Greigite Reactivity toward Se(IV)/Se(VI)</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Charlet, Laurent ; Kang, Mingliang ; Bardelli, Fabrizio ; Kirsch, Regina ; Géhin, Antoine ; Grenèche, Jean-Marc ; Chen, Fanrong</creator><creatorcontrib>Charlet, Laurent ; Kang, Mingliang ; Bardelli, Fabrizio ; Kirsch, Regina ; Géhin, Antoine ; Grenèche, Jean-Marc ; Chen, Fanrong</creatorcontrib><description>A nanopyrite/greigite composite was synthesized by reacting FeCl3 and NaHS in a ratio of 1:2 (Wei et al. 1996). Following this procedure, the obtained solid phases consisted of 30–50 nm sized particles containing 28% of greigite (Fe2+Fe3+ 2S4) and 72% pyrite (FeS2). Batch reactor experiments were performed with selenite or selenate by equilibrating suspensions containing the nanosized pyrite–greigite solid phase at different pH-values and with or without the addition of extra Fe2+. XANES-EXAFS spectroscopic techniques revealed, for the first time, the formation of ferroselite (FeSe2) as the predominant reaction product, along with elemental Se. In the present experimental conditions, at pH 6 and in equilibrium with Se0, the solution is oversaturated with respect to ferrosilite. Furthermore, thermodynamic computations show that reaction kinetics likely played a significant role in our experimental system.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/es204181q</identifier><identifier>PMID: 22424403</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Earth sciences ; Earth, ocean, space ; Engineering and environment geology. Geothermics ; Exact sciences and technology ; Hydrogen-Ion Concentration ; Iron - chemistry ; Nanocomposites - chemistry ; Phase transitions ; Pollution ; Pollution, environment geology ; Radioactive wastes ; Reaction kinetics ; Selenium Compounds - chemistry ; Spectrum analysis ; Sulfides - chemistry ; Thermodynamics ; Wastes ; X-Ray Absorption Spectroscopy</subject><ispartof>Environmental science &amp; technology, 2012-05, Vol.46 (9), p.4869-4876</ispartof><rights>Copyright © 2012 American Chemical Society</rights><rights>2014 INIST-CNRS</rights><rights>2012 American Chemical Society</rights><rights>Copyright American Chemical Society May 1, 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a373t-47d5af9dbaa1a70baac7c0943f6b5dc5558d2041a9b126c3de875c621c4b2f833</citedby><cites>FETCH-LOGICAL-a373t-47d5af9dbaa1a70baac7c0943f6b5dc5558d2041a9b126c3de875c621c4b2f833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/es204181q$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/es204181q$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25863866$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22424403$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Charlet, Laurent</creatorcontrib><creatorcontrib>Kang, Mingliang</creatorcontrib><creatorcontrib>Bardelli, Fabrizio</creatorcontrib><creatorcontrib>Kirsch, Regina</creatorcontrib><creatorcontrib>Géhin, Antoine</creatorcontrib><creatorcontrib>Grenèche, Jean-Marc</creatorcontrib><creatorcontrib>Chen, Fanrong</creatorcontrib><title>Nanocomposite Pyrite–Greigite Reactivity toward Se(IV)/Se(VI)</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>A nanopyrite/greigite composite was synthesized by reacting FeCl3 and NaHS in a ratio of 1:2 (Wei et al. 1996). Following this procedure, the obtained solid phases consisted of 30–50 nm sized particles containing 28% of greigite (Fe2+Fe3+ 2S4) and 72% pyrite (FeS2). Batch reactor experiments were performed with selenite or selenate by equilibrating suspensions containing the nanosized pyrite–greigite solid phase at different pH-values and with or without the addition of extra Fe2+. XANES-EXAFS spectroscopic techniques revealed, for the first time, the formation of ferroselite (FeSe2) as the predominant reaction product, along with elemental Se. In the present experimental conditions, at pH 6 and in equilibrium with Se0, the solution is oversaturated with respect to ferrosilite. Furthermore, thermodynamic computations show that reaction kinetics likely played a significant role in our experimental system.</description><subject>Applied sciences</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Engineering and environment geology. Geothermics</subject><subject>Exact sciences and technology</subject><subject>Hydrogen-Ion Concentration</subject><subject>Iron - chemistry</subject><subject>Nanocomposites - chemistry</subject><subject>Phase transitions</subject><subject>Pollution</subject><subject>Pollution, environment geology</subject><subject>Radioactive wastes</subject><subject>Reaction kinetics</subject><subject>Selenium Compounds - chemistry</subject><subject>Spectrum analysis</subject><subject>Sulfides - chemistry</subject><subject>Thermodynamics</subject><subject>Wastes</subject><subject>X-Ray Absorption Spectroscopy</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpd0MtKw0AUBuBBFFurC19ACiK0i9i5Z7ISKVoLRcVLcRcmk4mk5NLOJEp3voNv6JM4obWVrn4YPs6c8wNwiuAlghgNtMWQIoEWe6CNGIYeEwztgzaEiHgB4W8tcGTtDEKICRSHoIUxxZRC0gZX97IoVZnPS5tWuvu4NC5-vr5HRqfvzcuTlqpKP9Jq2a3KT2ni7rPujaf9gYvpuH8MDhKZWX2yzg54vb15Gd55k4fReHg98STxSeVRP2YyCeJISiR96EL5CgaUJDxisWKMibi5QQYRwlyRWAufKY6RohFOBCEd0FvNnZtyUWtbhXlqlc4yWeiytiGCCHLChDuqA8536KysTeG2axSinBGKneqvlDKltUYn4dykuTRLh8Km1XDTqrNn64l1lOt4I_9qdOBiDaRVMkuMLFRqt44JTgTnWyeV_b_V7oe_yFKJeQ</recordid><startdate>20120501</startdate><enddate>20120501</enddate><creator>Charlet, Laurent</creator><creator>Kang, Mingliang</creator><creator>Bardelli, Fabrizio</creator><creator>Kirsch, Regina</creator><creator>Géhin, Antoine</creator><creator>Grenèche, Jean-Marc</creator><creator>Chen, Fanrong</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20120501</creationdate><title>Nanocomposite Pyrite–Greigite Reactivity toward Se(IV)/Se(VI)</title><author>Charlet, Laurent ; Kang, Mingliang ; Bardelli, Fabrizio ; Kirsch, Regina ; Géhin, Antoine ; Grenèche, Jean-Marc ; Chen, Fanrong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a373t-47d5af9dbaa1a70baac7c0943f6b5dc5558d2041a9b126c3de875c621c4b2f833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Engineering and environment geology. Geothermics</topic><topic>Exact sciences and technology</topic><topic>Hydrogen-Ion Concentration</topic><topic>Iron - chemistry</topic><topic>Nanocomposites - chemistry</topic><topic>Phase transitions</topic><topic>Pollution</topic><topic>Pollution, environment geology</topic><topic>Radioactive wastes</topic><topic>Reaction kinetics</topic><topic>Selenium Compounds - chemistry</topic><topic>Spectrum analysis</topic><topic>Sulfides - chemistry</topic><topic>Thermodynamics</topic><topic>Wastes</topic><topic>X-Ray Absorption Spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Charlet, Laurent</creatorcontrib><creatorcontrib>Kang, Mingliang</creatorcontrib><creatorcontrib>Bardelli, Fabrizio</creatorcontrib><creatorcontrib>Kirsch, Regina</creatorcontrib><creatorcontrib>Géhin, Antoine</creatorcontrib><creatorcontrib>Grenèche, Jean-Marc</creatorcontrib><creatorcontrib>Chen, Fanrong</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Charlet, Laurent</au><au>Kang, Mingliang</au><au>Bardelli, Fabrizio</au><au>Kirsch, Regina</au><au>Géhin, Antoine</au><au>Grenèche, Jean-Marc</au><au>Chen, Fanrong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanocomposite Pyrite–Greigite Reactivity toward Se(IV)/Se(VI)</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2012-05-01</date><risdate>2012</risdate><volume>46</volume><issue>9</issue><spage>4869</spage><epage>4876</epage><pages>4869-4876</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><coden>ESTHAG</coden><abstract>A nanopyrite/greigite composite was synthesized by reacting FeCl3 and NaHS in a ratio of 1:2 (Wei et al. 1996). Following this procedure, the obtained solid phases consisted of 30–50 nm sized particles containing 28% of greigite (Fe2+Fe3+ 2S4) and 72% pyrite (FeS2). Batch reactor experiments were performed with selenite or selenate by equilibrating suspensions containing the nanosized pyrite–greigite solid phase at different pH-values and with or without the addition of extra Fe2+. XANES-EXAFS spectroscopic techniques revealed, for the first time, the formation of ferroselite (FeSe2) as the predominant reaction product, along with elemental Se. In the present experimental conditions, at pH 6 and in equilibrium with Se0, the solution is oversaturated with respect to ferrosilite. Furthermore, thermodynamic computations show that reaction kinetics likely played a significant role in our experimental system.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>22424403</pmid><doi>10.1021/es204181q</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2012-05, Vol.46 (9), p.4869-4876
issn 0013-936X
1520-5851
language eng
recordid cdi_proquest_miscellaneous_1010635840
source MEDLINE; American Chemical Society Journals
subjects Applied sciences
Earth sciences
Earth, ocean, space
Engineering and environment geology. Geothermics
Exact sciences and technology
Hydrogen-Ion Concentration
Iron - chemistry
Nanocomposites - chemistry
Phase transitions
Pollution
Pollution, environment geology
Radioactive wastes
Reaction kinetics
Selenium Compounds - chemistry
Spectrum analysis
Sulfides - chemistry
Thermodynamics
Wastes
X-Ray Absorption Spectroscopy
title Nanocomposite Pyrite–Greigite Reactivity toward Se(IV)/Se(VI)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T12%3A08%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanocomposite%20Pyrite%E2%80%93Greigite%20Reactivity%20toward%20Se(IV)/Se(VI)&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Charlet,%20Laurent&rft.date=2012-05-01&rft.volume=46&rft.issue=9&rft.spage=4869&rft.epage=4876&rft.pages=4869-4876&rft.issn=0013-936X&rft.eissn=1520-5851&rft.coden=ESTHAG&rft_id=info:doi/10.1021/es204181q&rft_dat=%3Cproquest_cross%3E2653763161%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1011465342&rft_id=info:pmid/22424403&rfr_iscdi=true