In vitro screening of plant lectins and tropical plant extracts for anthelmintic properties
Lectins are plant secondary metabolites (PSM) found in many forages and which may confer anthelmintic properties to gastrointestinal parasites through disrupting the development of parasitic larvae throughout its life cycle. In experiment 1, the ability of the plant lectins jacalin (JAC), concanaval...
Gespeichert in:
Veröffentlicht in: | Veterinary parasitology 2012-05, Vol.186 (3-4), p.390-398 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 398 |
---|---|
container_issue | 3-4 |
container_start_page | 390 |
container_title | Veterinary parasitology |
container_volume | 186 |
creator | Ríos-de Álvarez, L. Jackson, F. Greer, A. Bartley, Y. Bartley, D.J. Grant, G. Huntley, J.F. |
description | Lectins are plant secondary metabolites (PSM) found in many forages and which may confer anthelmintic properties to gastrointestinal parasites through disrupting the development of parasitic larvae throughout its life cycle. In experiment 1, the ability of the plant lectins jacalin (JAC), concanavalin A (Con A), phytohemagglutinin E2L2 (PHA-E2L2), phytohemagglutinin L4 (PHA-L4), phytohemagglutinin E3L (PHA-E3L), kidney bean albumin (KBA), Robinia pseudoacacia agglutinin (RPA), Maackia amurensis lectin (MAA), Maclura pomifera agglutinin (MAA), Dolichos biflorus agglutinin (DBA), wheat germ agglutinin (WGA) and Galanthus nivalis agglutinin (GNA) to disrupt the feeding of the first stage larvae (L1) of the sheep gastro-intestinal nematodes (GIN) Teladorsagia circumcincta, Haemonchus contortus and Trichostrongylus colubriformis was investigated using a larval feeding inhibition test (LFIT). Only PHA-E3L, WGA and Con A had a potent effect on disrupting larval feeding of all of the three species of GIN investigated. The lectin concentration required to inhibit feeding in 50% of L1 (IC50) was 7.3±1.2, 8.3±1.4 and 4.3±1.7μg/ml for PHA-E3L; 59.1±32.4, 58.7±11.9 and 8.1±7.0μg/ml for Con A and 78.9±11.2, 69.4±8.1 and 28.0±14.1μg/ml for WGA for T. circumcincta, H. contortus and T. colubriformis larvae, respectively (P=0.006). The addition of the lectin inhibitors fetuin, glucose/mannose or N-acetylglucosamine for PHA-E3L, Con A and WGA, respectively, caused an increase in the proportion of larvae that had fed at all concentrations for PHA-E3L only. In experiment 2, the effect of extracts from the tropical plants Azadiractha indica, Trichanthera gigantea, Morus alba, Gliricidia sepium and Leucaena leucocephala on the feeding behaviour of H. contortus L1, was examined. A. indica, T. gigantea and M. alba failed to inhibit 50% of larvae from feeding at concentrations up to 10mg plant extract per ml. In contrast, both G. sepium and L. leucocephala demonstrated a dose-dependent effect on larval feeding with respective IC50 estimates (mean±s.e.) of 0.015mg/ml±0.001 and 3.465mg/ml±0.144, effects which were partly reversed by the inclusion of either the tannin inhibitor polyethylene glycol or the lectin inhibitor Fetuin. These studies demonstrate that plant lectins can have an inhibitory effect on the feeding behaviour of first stage larvae of ovine GIN in vitro. Moreover they also provide novel evidence that lectins may contribute to the anthelmintic properties of some tropic |
doi_str_mv | 10.1016/j.vetpar.2011.11.004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1009524819</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304401711007199</els_id><sourcerecordid>1009524819</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-d84ffc62f4222c5d49a3a1292e26f7bb64df13b55dd67477bd2f6b23b26b2baf3</originalsourceid><addsrcrecordid>eNp9kEtrGzEQgEVoiJ00_yC0Ovayjl6rtS-FYtrGEMghzakHoZVGqcx6dyvJJvn3HbNujoFh5jDfPPgIueFswRnXt9vFAcpo00IwzhcYjKkzMufLRlairtkHMmeSqUox3szIZc5bhgTTzQWZCcElk1LPye9NTw-xpIFmlwD62D_TIdCxs32hHbgS-0xt7ykiY3S2O7XgpSTrSqZhSNgvf6Dbxb5ER0cEIZUI-SM5D7bLcH2qV-Tpx_df67vq_uHnZv3tvnJyqUvllyoEp0VQQghXe7Wy0nKxEiB0aNpWKx-4bOvae92opmm9CLoVshWYWxvkFfky7cXTf_eQi9nF7KDDR2HYZ8MZW9VCLfkKUTWhLg05JwhmTHFn0ytC5qjVbM2k1Ry1GgyUhmOfThf27Q7829B_jwh8noBgB2OfU8zm6RE3KIb2VSNrJL5OBKCJQ4RksovQO_AxoWbjh_j-D_8AE-CViQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1009524819</pqid></control><display><type>article</type><title>In vitro screening of plant lectins and tropical plant extracts for anthelmintic properties</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Ríos-de Álvarez, L. ; Jackson, F. ; Greer, A. ; Bartley, Y. ; Bartley, D.J. ; Grant, G. ; Huntley, J.F.</creator><creatorcontrib>Ríos-de Álvarez, L. ; Jackson, F. ; Greer, A. ; Bartley, Y. ; Bartley, D.J. ; Grant, G. ; Huntley, J.F.</creatorcontrib><description>Lectins are plant secondary metabolites (PSM) found in many forages and which may confer anthelmintic properties to gastrointestinal parasites through disrupting the development of parasitic larvae throughout its life cycle. In experiment 1, the ability of the plant lectins jacalin (JAC), concanavalin A (Con A), phytohemagglutinin E2L2 (PHA-E2L2), phytohemagglutinin L4 (PHA-L4), phytohemagglutinin E3L (PHA-E3L), kidney bean albumin (KBA), Robinia pseudoacacia agglutinin (RPA), Maackia amurensis lectin (MAA), Maclura pomifera agglutinin (MAA), Dolichos biflorus agglutinin (DBA), wheat germ agglutinin (WGA) and Galanthus nivalis agglutinin (GNA) to disrupt the feeding of the first stage larvae (L1) of the sheep gastro-intestinal nematodes (GIN) Teladorsagia circumcincta, Haemonchus contortus and Trichostrongylus colubriformis was investigated using a larval feeding inhibition test (LFIT). Only PHA-E3L, WGA and Con A had a potent effect on disrupting larval feeding of all of the three species of GIN investigated. The lectin concentration required to inhibit feeding in 50% of L1 (IC50) was 7.3±1.2, 8.3±1.4 and 4.3±1.7μg/ml for PHA-E3L; 59.1±32.4, 58.7±11.9 and 8.1±7.0μg/ml for Con A and 78.9±11.2, 69.4±8.1 and 28.0±14.1μg/ml for WGA for T. circumcincta, H. contortus and T. colubriformis larvae, respectively (P=0.006). The addition of the lectin inhibitors fetuin, glucose/mannose or N-acetylglucosamine for PHA-E3L, Con A and WGA, respectively, caused an increase in the proportion of larvae that had fed at all concentrations for PHA-E3L only. In experiment 2, the effect of extracts from the tropical plants Azadiractha indica, Trichanthera gigantea, Morus alba, Gliricidia sepium and Leucaena leucocephala on the feeding behaviour of H. contortus L1, was examined. A. indica, T. gigantea and M. alba failed to inhibit 50% of larvae from feeding at concentrations up to 10mg plant extract per ml. In contrast, both G. sepium and L. leucocephala demonstrated a dose-dependent effect on larval feeding with respective IC50 estimates (mean±s.e.) of 0.015mg/ml±0.001 and 3.465mg/ml±0.144, effects which were partly reversed by the inclusion of either the tannin inhibitor polyethylene glycol or the lectin inhibitor Fetuin. These studies demonstrate that plant lectins can have an inhibitory effect on the feeding behaviour of first stage larvae of ovine GIN in vitro. Moreover they also provide novel evidence that lectins may contribute to the anthelmintic properties of some tropical forage plant extracts, such as G. sepium and L. leucocephala.</description><identifier>ISSN: 0304-4017</identifier><identifier>EISSN: 1873-2550</identifier><identifier>DOI: 10.1016/j.vetpar.2011.11.004</identifier><identifier>PMID: 22130336</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>agglutinins ; albumins ; Animals ; anthelmintics ; Anthelmintics - chemistry ; Anthelmintics - pharmacology ; concanavalin A ; Eriocaulon ; feeding behavior ; fetuins ; forage ; Galanthus nivalis ; Gastrointestinal nematodes ; Gliricidia sepium ; glucose ; Haemonchus contortus ; In vitro ; kidney beans ; Larva - drug effects ; larvae ; larval development ; Larval feeding inhibition test ; Leucaena leucocephala ; Maackia amurensis ; Maclura pomifera ; Macrotyloma uniflorum ; Morus alba ; N-acetylglucosamine ; Nematoda - drug effects ; parasites ; phytohemagglutinin ; plant extracts ; Plant Extracts - chemistry ; Plant Extracts - pharmacology ; Plant lectins ; Plant Lectins - chemistry ; Plant Lectins - pharmacology ; Plant secondary metabolites ; polyethylene glycol ; Robinia pseudoacacia ; secondary metabolites ; sheep ; tannins ; Teladorsagia circumcincta ; Trichostrongylus colubriformis ; Tropical Climate ; wheat germ</subject><ispartof>Veterinary parasitology, 2012-05, Vol.186 (3-4), p.390-398</ispartof><rights>2011 Elsevier B.V.</rights><rights>Copyright © 2011 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-d84ffc62f4222c5d49a3a1292e26f7bb64df13b55dd67477bd2f6b23b26b2baf3</citedby><cites>FETCH-LOGICAL-c386t-d84ffc62f4222c5d49a3a1292e26f7bb64df13b55dd67477bd2f6b23b26b2baf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.vetpar.2011.11.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22130336$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ríos-de Álvarez, L.</creatorcontrib><creatorcontrib>Jackson, F.</creatorcontrib><creatorcontrib>Greer, A.</creatorcontrib><creatorcontrib>Bartley, Y.</creatorcontrib><creatorcontrib>Bartley, D.J.</creatorcontrib><creatorcontrib>Grant, G.</creatorcontrib><creatorcontrib>Huntley, J.F.</creatorcontrib><title>In vitro screening of plant lectins and tropical plant extracts for anthelmintic properties</title><title>Veterinary parasitology</title><addtitle>Vet Parasitol</addtitle><description>Lectins are plant secondary metabolites (PSM) found in many forages and which may confer anthelmintic properties to gastrointestinal parasites through disrupting the development of parasitic larvae throughout its life cycle. In experiment 1, the ability of the plant lectins jacalin (JAC), concanavalin A (Con A), phytohemagglutinin E2L2 (PHA-E2L2), phytohemagglutinin L4 (PHA-L4), phytohemagglutinin E3L (PHA-E3L), kidney bean albumin (KBA), Robinia pseudoacacia agglutinin (RPA), Maackia amurensis lectin (MAA), Maclura pomifera agglutinin (MAA), Dolichos biflorus agglutinin (DBA), wheat germ agglutinin (WGA) and Galanthus nivalis agglutinin (GNA) to disrupt the feeding of the first stage larvae (L1) of the sheep gastro-intestinal nematodes (GIN) Teladorsagia circumcincta, Haemonchus contortus and Trichostrongylus colubriformis was investigated using a larval feeding inhibition test (LFIT). Only PHA-E3L, WGA and Con A had a potent effect on disrupting larval feeding of all of the three species of GIN investigated. The lectin concentration required to inhibit feeding in 50% of L1 (IC50) was 7.3±1.2, 8.3±1.4 and 4.3±1.7μg/ml for PHA-E3L; 59.1±32.4, 58.7±11.9 and 8.1±7.0μg/ml for Con A and 78.9±11.2, 69.4±8.1 and 28.0±14.1μg/ml for WGA for T. circumcincta, H. contortus and T. colubriformis larvae, respectively (P=0.006). The addition of the lectin inhibitors fetuin, glucose/mannose or N-acetylglucosamine for PHA-E3L, Con A and WGA, respectively, caused an increase in the proportion of larvae that had fed at all concentrations for PHA-E3L only. In experiment 2, the effect of extracts from the tropical plants Azadiractha indica, Trichanthera gigantea, Morus alba, Gliricidia sepium and Leucaena leucocephala on the feeding behaviour of H. contortus L1, was examined. A. indica, T. gigantea and M. alba failed to inhibit 50% of larvae from feeding at concentrations up to 10mg plant extract per ml. In contrast, both G. sepium and L. leucocephala demonstrated a dose-dependent effect on larval feeding with respective IC50 estimates (mean±s.e.) of 0.015mg/ml±0.001 and 3.465mg/ml±0.144, effects which were partly reversed by the inclusion of either the tannin inhibitor polyethylene glycol or the lectin inhibitor Fetuin. These studies demonstrate that plant lectins can have an inhibitory effect on the feeding behaviour of first stage larvae of ovine GIN in vitro. Moreover they also provide novel evidence that lectins may contribute to the anthelmintic properties of some tropical forage plant extracts, such as G. sepium and L. leucocephala.</description><subject>agglutinins</subject><subject>albumins</subject><subject>Animals</subject><subject>anthelmintics</subject><subject>Anthelmintics - chemistry</subject><subject>Anthelmintics - pharmacology</subject><subject>concanavalin A</subject><subject>Eriocaulon</subject><subject>feeding behavior</subject><subject>fetuins</subject><subject>forage</subject><subject>Galanthus nivalis</subject><subject>Gastrointestinal nematodes</subject><subject>Gliricidia sepium</subject><subject>glucose</subject><subject>Haemonchus contortus</subject><subject>In vitro</subject><subject>kidney beans</subject><subject>Larva - drug effects</subject><subject>larvae</subject><subject>larval development</subject><subject>Larval feeding inhibition test</subject><subject>Leucaena leucocephala</subject><subject>Maackia amurensis</subject><subject>Maclura pomifera</subject><subject>Macrotyloma uniflorum</subject><subject>Morus alba</subject><subject>N-acetylglucosamine</subject><subject>Nematoda - drug effects</subject><subject>parasites</subject><subject>phytohemagglutinin</subject><subject>plant extracts</subject><subject>Plant Extracts - chemistry</subject><subject>Plant Extracts - pharmacology</subject><subject>Plant lectins</subject><subject>Plant Lectins - chemistry</subject><subject>Plant Lectins - pharmacology</subject><subject>Plant secondary metabolites</subject><subject>polyethylene glycol</subject><subject>Robinia pseudoacacia</subject><subject>secondary metabolites</subject><subject>sheep</subject><subject>tannins</subject><subject>Teladorsagia circumcincta</subject><subject>Trichostrongylus colubriformis</subject><subject>Tropical Climate</subject><subject>wheat germ</subject><issn>0304-4017</issn><issn>1873-2550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEtrGzEQgEVoiJ00_yC0Ovayjl6rtS-FYtrGEMghzakHoZVGqcx6dyvJJvn3HbNujoFh5jDfPPgIueFswRnXt9vFAcpo00IwzhcYjKkzMufLRlairtkHMmeSqUox3szIZc5bhgTTzQWZCcElk1LPye9NTw-xpIFmlwD62D_TIdCxs32hHbgS-0xt7ykiY3S2O7XgpSTrSqZhSNgvf6Dbxb5ER0cEIZUI-SM5D7bLcH2qV-Tpx_df67vq_uHnZv3tvnJyqUvllyoEp0VQQghXe7Wy0nKxEiB0aNpWKx-4bOvae92opmm9CLoVshWYWxvkFfky7cXTf_eQi9nF7KDDR2HYZ8MZW9VCLfkKUTWhLg05JwhmTHFn0ytC5qjVbM2k1Ry1GgyUhmOfThf27Q7829B_jwh8noBgB2OfU8zm6RE3KIb2VSNrJL5OBKCJQ4RksovQO_AxoWbjh_j-D_8AE-CViQ</recordid><startdate>20120525</startdate><enddate>20120525</enddate><creator>Ríos-de Álvarez, L.</creator><creator>Jackson, F.</creator><creator>Greer, A.</creator><creator>Bartley, Y.</creator><creator>Bartley, D.J.</creator><creator>Grant, G.</creator><creator>Huntley, J.F.</creator><general>Elsevier B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20120525</creationdate><title>In vitro screening of plant lectins and tropical plant extracts for anthelmintic properties</title><author>Ríos-de Álvarez, L. ; Jackson, F. ; Greer, A. ; Bartley, Y. ; Bartley, D.J. ; Grant, G. ; Huntley, J.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-d84ffc62f4222c5d49a3a1292e26f7bb64df13b55dd67477bd2f6b23b26b2baf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>agglutinins</topic><topic>albumins</topic><topic>Animals</topic><topic>anthelmintics</topic><topic>Anthelmintics - chemistry</topic><topic>Anthelmintics - pharmacology</topic><topic>concanavalin A</topic><topic>Eriocaulon</topic><topic>feeding behavior</topic><topic>fetuins</topic><topic>forage</topic><topic>Galanthus nivalis</topic><topic>Gastrointestinal nematodes</topic><topic>Gliricidia sepium</topic><topic>glucose</topic><topic>Haemonchus contortus</topic><topic>In vitro</topic><topic>kidney beans</topic><topic>Larva - drug effects</topic><topic>larvae</topic><topic>larval development</topic><topic>Larval feeding inhibition test</topic><topic>Leucaena leucocephala</topic><topic>Maackia amurensis</topic><topic>Maclura pomifera</topic><topic>Macrotyloma uniflorum</topic><topic>Morus alba</topic><topic>N-acetylglucosamine</topic><topic>Nematoda - drug effects</topic><topic>parasites</topic><topic>phytohemagglutinin</topic><topic>plant extracts</topic><topic>Plant Extracts - chemistry</topic><topic>Plant Extracts - pharmacology</topic><topic>Plant lectins</topic><topic>Plant Lectins - chemistry</topic><topic>Plant Lectins - pharmacology</topic><topic>Plant secondary metabolites</topic><topic>polyethylene glycol</topic><topic>Robinia pseudoacacia</topic><topic>secondary metabolites</topic><topic>sheep</topic><topic>tannins</topic><topic>Teladorsagia circumcincta</topic><topic>Trichostrongylus colubriformis</topic><topic>Tropical Climate</topic><topic>wheat germ</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ríos-de Álvarez, L.</creatorcontrib><creatorcontrib>Jackson, F.</creatorcontrib><creatorcontrib>Greer, A.</creatorcontrib><creatorcontrib>Bartley, Y.</creatorcontrib><creatorcontrib>Bartley, D.J.</creatorcontrib><creatorcontrib>Grant, G.</creatorcontrib><creatorcontrib>Huntley, J.F.</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Veterinary parasitology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ríos-de Álvarez, L.</au><au>Jackson, F.</au><au>Greer, A.</au><au>Bartley, Y.</au><au>Bartley, D.J.</au><au>Grant, G.</au><au>Huntley, J.F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In vitro screening of plant lectins and tropical plant extracts for anthelmintic properties</atitle><jtitle>Veterinary parasitology</jtitle><addtitle>Vet Parasitol</addtitle><date>2012-05-25</date><risdate>2012</risdate><volume>186</volume><issue>3-4</issue><spage>390</spage><epage>398</epage><pages>390-398</pages><issn>0304-4017</issn><eissn>1873-2550</eissn><abstract>Lectins are plant secondary metabolites (PSM) found in many forages and which may confer anthelmintic properties to gastrointestinal parasites through disrupting the development of parasitic larvae throughout its life cycle. In experiment 1, the ability of the plant lectins jacalin (JAC), concanavalin A (Con A), phytohemagglutinin E2L2 (PHA-E2L2), phytohemagglutinin L4 (PHA-L4), phytohemagglutinin E3L (PHA-E3L), kidney bean albumin (KBA), Robinia pseudoacacia agglutinin (RPA), Maackia amurensis lectin (MAA), Maclura pomifera agglutinin (MAA), Dolichos biflorus agglutinin (DBA), wheat germ agglutinin (WGA) and Galanthus nivalis agglutinin (GNA) to disrupt the feeding of the first stage larvae (L1) of the sheep gastro-intestinal nematodes (GIN) Teladorsagia circumcincta, Haemonchus contortus and Trichostrongylus colubriformis was investigated using a larval feeding inhibition test (LFIT). Only PHA-E3L, WGA and Con A had a potent effect on disrupting larval feeding of all of the three species of GIN investigated. The lectin concentration required to inhibit feeding in 50% of L1 (IC50) was 7.3±1.2, 8.3±1.4 and 4.3±1.7μg/ml for PHA-E3L; 59.1±32.4, 58.7±11.9 and 8.1±7.0μg/ml for Con A and 78.9±11.2, 69.4±8.1 and 28.0±14.1μg/ml for WGA for T. circumcincta, H. contortus and T. colubriformis larvae, respectively (P=0.006). The addition of the lectin inhibitors fetuin, glucose/mannose or N-acetylglucosamine for PHA-E3L, Con A and WGA, respectively, caused an increase in the proportion of larvae that had fed at all concentrations for PHA-E3L only. In experiment 2, the effect of extracts from the tropical plants Azadiractha indica, Trichanthera gigantea, Morus alba, Gliricidia sepium and Leucaena leucocephala on the feeding behaviour of H. contortus L1, was examined. A. indica, T. gigantea and M. alba failed to inhibit 50% of larvae from feeding at concentrations up to 10mg plant extract per ml. In contrast, both G. sepium and L. leucocephala demonstrated a dose-dependent effect on larval feeding with respective IC50 estimates (mean±s.e.) of 0.015mg/ml±0.001 and 3.465mg/ml±0.144, effects which were partly reversed by the inclusion of either the tannin inhibitor polyethylene glycol or the lectin inhibitor Fetuin. These studies demonstrate that plant lectins can have an inhibitory effect on the feeding behaviour of first stage larvae of ovine GIN in vitro. Moreover they also provide novel evidence that lectins may contribute to the anthelmintic properties of some tropical forage plant extracts, such as G. sepium and L. leucocephala.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>22130336</pmid><doi>10.1016/j.vetpar.2011.11.004</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-4017 |
ispartof | Veterinary parasitology, 2012-05, Vol.186 (3-4), p.390-398 |
issn | 0304-4017 1873-2550 |
language | eng |
recordid | cdi_proquest_miscellaneous_1009524819 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | agglutinins albumins Animals anthelmintics Anthelmintics - chemistry Anthelmintics - pharmacology concanavalin A Eriocaulon feeding behavior fetuins forage Galanthus nivalis Gastrointestinal nematodes Gliricidia sepium glucose Haemonchus contortus In vitro kidney beans Larva - drug effects larvae larval development Larval feeding inhibition test Leucaena leucocephala Maackia amurensis Maclura pomifera Macrotyloma uniflorum Morus alba N-acetylglucosamine Nematoda - drug effects parasites phytohemagglutinin plant extracts Plant Extracts - chemistry Plant Extracts - pharmacology Plant lectins Plant Lectins - chemistry Plant Lectins - pharmacology Plant secondary metabolites polyethylene glycol Robinia pseudoacacia secondary metabolites sheep tannins Teladorsagia circumcincta Trichostrongylus colubriformis Tropical Climate wheat germ |
title | In vitro screening of plant lectins and tropical plant extracts for anthelmintic properties |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T11%3A19%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20vitro%20screening%20of%20plant%20lectins%20and%20tropical%20plant%20extracts%20for%20anthelmintic%20properties&rft.jtitle=Veterinary%20parasitology&rft.au=R%C3%ADos-de%20%C3%81lvarez,%20L.&rft.date=2012-05-25&rft.volume=186&rft.issue=3-4&rft.spage=390&rft.epage=398&rft.pages=390-398&rft.issn=0304-4017&rft.eissn=1873-2550&rft_id=info:doi/10.1016/j.vetpar.2011.11.004&rft_dat=%3Cproquest_cross%3E1009524819%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1009524819&rft_id=info:pmid/22130336&rft_els_id=S0304401711007199&rfr_iscdi=true |