In vitro screening of plant lectins and tropical plant extracts for anthelmintic properties

Lectins are plant secondary metabolites (PSM) found in many forages and which may confer anthelmintic properties to gastrointestinal parasites through disrupting the development of parasitic larvae throughout its life cycle. In experiment 1, the ability of the plant lectins jacalin (JAC), concanaval...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Veterinary parasitology 2012-05, Vol.186 (3-4), p.390-398
Hauptverfasser: Ríos-de Álvarez, L., Jackson, F., Greer, A., Bartley, Y., Bartley, D.J., Grant, G., Huntley, J.F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 398
container_issue 3-4
container_start_page 390
container_title Veterinary parasitology
container_volume 186
creator Ríos-de Álvarez, L.
Jackson, F.
Greer, A.
Bartley, Y.
Bartley, D.J.
Grant, G.
Huntley, J.F.
description Lectins are plant secondary metabolites (PSM) found in many forages and which may confer anthelmintic properties to gastrointestinal parasites through disrupting the development of parasitic larvae throughout its life cycle. In experiment 1, the ability of the plant lectins jacalin (JAC), concanavalin A (Con A), phytohemagglutinin E2L2 (PHA-E2L2), phytohemagglutinin L4 (PHA-L4), phytohemagglutinin E3L (PHA-E3L), kidney bean albumin (KBA), Robinia pseudoacacia agglutinin (RPA), Maackia amurensis lectin (MAA), Maclura pomifera agglutinin (MAA), Dolichos biflorus agglutinin (DBA), wheat germ agglutinin (WGA) and Galanthus nivalis agglutinin (GNA) to disrupt the feeding of the first stage larvae (L1) of the sheep gastro-intestinal nematodes (GIN) Teladorsagia circumcincta, Haemonchus contortus and Trichostrongylus colubriformis was investigated using a larval feeding inhibition test (LFIT). Only PHA-E3L, WGA and Con A had a potent effect on disrupting larval feeding of all of the three species of GIN investigated. The lectin concentration required to inhibit feeding in 50% of L1 (IC50) was 7.3±1.2, 8.3±1.4 and 4.3±1.7μg/ml for PHA-E3L; 59.1±32.4, 58.7±11.9 and 8.1±7.0μg/ml for Con A and 78.9±11.2, 69.4±8.1 and 28.0±14.1μg/ml for WGA for T. circumcincta, H. contortus and T. colubriformis larvae, respectively (P=0.006). The addition of the lectin inhibitors fetuin, glucose/mannose or N-acetylglucosamine for PHA-E3L, Con A and WGA, respectively, caused an increase in the proportion of larvae that had fed at all concentrations for PHA-E3L only. In experiment 2, the effect of extracts from the tropical plants Azadiractha indica, Trichanthera gigantea, Morus alba, Gliricidia sepium and Leucaena leucocephala on the feeding behaviour of H. contortus L1, was examined. A. indica, T. gigantea and M. alba failed to inhibit 50% of larvae from feeding at concentrations up to 10mg plant extract per ml. In contrast, both G. sepium and L. leucocephala demonstrated a dose-dependent effect on larval feeding with respective IC50 estimates (mean±s.e.) of 0.015mg/ml±0.001 and 3.465mg/ml±0.144, effects which were partly reversed by the inclusion of either the tannin inhibitor polyethylene glycol or the lectin inhibitor Fetuin. These studies demonstrate that plant lectins can have an inhibitory effect on the feeding behaviour of first stage larvae of ovine GIN in vitro. Moreover they also provide novel evidence that lectins may contribute to the anthelmintic properties of some tropic
doi_str_mv 10.1016/j.vetpar.2011.11.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1009524819</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304401711007199</els_id><sourcerecordid>1009524819</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-d84ffc62f4222c5d49a3a1292e26f7bb64df13b55dd67477bd2f6b23b26b2baf3</originalsourceid><addsrcrecordid>eNp9kEtrGzEQgEVoiJ00_yC0Ovayjl6rtS-FYtrGEMghzakHoZVGqcx6dyvJJvn3HbNujoFh5jDfPPgIueFswRnXt9vFAcpo00IwzhcYjKkzMufLRlairtkHMmeSqUox3szIZc5bhgTTzQWZCcElk1LPye9NTw-xpIFmlwD62D_TIdCxs32hHbgS-0xt7ykiY3S2O7XgpSTrSqZhSNgvf6Dbxb5ER0cEIZUI-SM5D7bLcH2qV-Tpx_df67vq_uHnZv3tvnJyqUvllyoEp0VQQghXe7Wy0nKxEiB0aNpWKx-4bOvae92opmm9CLoVshWYWxvkFfky7cXTf_eQi9nF7KDDR2HYZ8MZW9VCLfkKUTWhLg05JwhmTHFn0ytC5qjVbM2k1Ry1GgyUhmOfThf27Q7829B_jwh8noBgB2OfU8zm6RE3KIb2VSNrJL5OBKCJQ4RksovQO_AxoWbjh_j-D_8AE-CViQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1009524819</pqid></control><display><type>article</type><title>In vitro screening of plant lectins and tropical plant extracts for anthelmintic properties</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Ríos-de Álvarez, L. ; Jackson, F. ; Greer, A. ; Bartley, Y. ; Bartley, D.J. ; Grant, G. ; Huntley, J.F.</creator><creatorcontrib>Ríos-de Álvarez, L. ; Jackson, F. ; Greer, A. ; Bartley, Y. ; Bartley, D.J. ; Grant, G. ; Huntley, J.F.</creatorcontrib><description>Lectins are plant secondary metabolites (PSM) found in many forages and which may confer anthelmintic properties to gastrointestinal parasites through disrupting the development of parasitic larvae throughout its life cycle. In experiment 1, the ability of the plant lectins jacalin (JAC), concanavalin A (Con A), phytohemagglutinin E2L2 (PHA-E2L2), phytohemagglutinin L4 (PHA-L4), phytohemagglutinin E3L (PHA-E3L), kidney bean albumin (KBA), Robinia pseudoacacia agglutinin (RPA), Maackia amurensis lectin (MAA), Maclura pomifera agglutinin (MAA), Dolichos biflorus agglutinin (DBA), wheat germ agglutinin (WGA) and Galanthus nivalis agglutinin (GNA) to disrupt the feeding of the first stage larvae (L1) of the sheep gastro-intestinal nematodes (GIN) Teladorsagia circumcincta, Haemonchus contortus and Trichostrongylus colubriformis was investigated using a larval feeding inhibition test (LFIT). Only PHA-E3L, WGA and Con A had a potent effect on disrupting larval feeding of all of the three species of GIN investigated. The lectin concentration required to inhibit feeding in 50% of L1 (IC50) was 7.3±1.2, 8.3±1.4 and 4.3±1.7μg/ml for PHA-E3L; 59.1±32.4, 58.7±11.9 and 8.1±7.0μg/ml for Con A and 78.9±11.2, 69.4±8.1 and 28.0±14.1μg/ml for WGA for T. circumcincta, H. contortus and T. colubriformis larvae, respectively (P=0.006). The addition of the lectin inhibitors fetuin, glucose/mannose or N-acetylglucosamine for PHA-E3L, Con A and WGA, respectively, caused an increase in the proportion of larvae that had fed at all concentrations for PHA-E3L only. In experiment 2, the effect of extracts from the tropical plants Azadiractha indica, Trichanthera gigantea, Morus alba, Gliricidia sepium and Leucaena leucocephala on the feeding behaviour of H. contortus L1, was examined. A. indica, T. gigantea and M. alba failed to inhibit 50% of larvae from feeding at concentrations up to 10mg plant extract per ml. In contrast, both G. sepium and L. leucocephala demonstrated a dose-dependent effect on larval feeding with respective IC50 estimates (mean±s.e.) of 0.015mg/ml±0.001 and 3.465mg/ml±0.144, effects which were partly reversed by the inclusion of either the tannin inhibitor polyethylene glycol or the lectin inhibitor Fetuin. These studies demonstrate that plant lectins can have an inhibitory effect on the feeding behaviour of first stage larvae of ovine GIN in vitro. Moreover they also provide novel evidence that lectins may contribute to the anthelmintic properties of some tropical forage plant extracts, such as G. sepium and L. leucocephala.</description><identifier>ISSN: 0304-4017</identifier><identifier>EISSN: 1873-2550</identifier><identifier>DOI: 10.1016/j.vetpar.2011.11.004</identifier><identifier>PMID: 22130336</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>agglutinins ; albumins ; Animals ; anthelmintics ; Anthelmintics - chemistry ; Anthelmintics - pharmacology ; concanavalin A ; Eriocaulon ; feeding behavior ; fetuins ; forage ; Galanthus nivalis ; Gastrointestinal nematodes ; Gliricidia sepium ; glucose ; Haemonchus contortus ; In vitro ; kidney beans ; Larva - drug effects ; larvae ; larval development ; Larval feeding inhibition test ; Leucaena leucocephala ; Maackia amurensis ; Maclura pomifera ; Macrotyloma uniflorum ; Morus alba ; N-acetylglucosamine ; Nematoda - drug effects ; parasites ; phytohemagglutinin ; plant extracts ; Plant Extracts - chemistry ; Plant Extracts - pharmacology ; Plant lectins ; Plant Lectins - chemistry ; Plant Lectins - pharmacology ; Plant secondary metabolites ; polyethylene glycol ; Robinia pseudoacacia ; secondary metabolites ; sheep ; tannins ; Teladorsagia circumcincta ; Trichostrongylus colubriformis ; Tropical Climate ; wheat germ</subject><ispartof>Veterinary parasitology, 2012-05, Vol.186 (3-4), p.390-398</ispartof><rights>2011 Elsevier B.V.</rights><rights>Copyright © 2011 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-d84ffc62f4222c5d49a3a1292e26f7bb64df13b55dd67477bd2f6b23b26b2baf3</citedby><cites>FETCH-LOGICAL-c386t-d84ffc62f4222c5d49a3a1292e26f7bb64df13b55dd67477bd2f6b23b26b2baf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.vetpar.2011.11.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22130336$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ríos-de Álvarez, L.</creatorcontrib><creatorcontrib>Jackson, F.</creatorcontrib><creatorcontrib>Greer, A.</creatorcontrib><creatorcontrib>Bartley, Y.</creatorcontrib><creatorcontrib>Bartley, D.J.</creatorcontrib><creatorcontrib>Grant, G.</creatorcontrib><creatorcontrib>Huntley, J.F.</creatorcontrib><title>In vitro screening of plant lectins and tropical plant extracts for anthelmintic properties</title><title>Veterinary parasitology</title><addtitle>Vet Parasitol</addtitle><description>Lectins are plant secondary metabolites (PSM) found in many forages and which may confer anthelmintic properties to gastrointestinal parasites through disrupting the development of parasitic larvae throughout its life cycle. In experiment 1, the ability of the plant lectins jacalin (JAC), concanavalin A (Con A), phytohemagglutinin E2L2 (PHA-E2L2), phytohemagglutinin L4 (PHA-L4), phytohemagglutinin E3L (PHA-E3L), kidney bean albumin (KBA), Robinia pseudoacacia agglutinin (RPA), Maackia amurensis lectin (MAA), Maclura pomifera agglutinin (MAA), Dolichos biflorus agglutinin (DBA), wheat germ agglutinin (WGA) and Galanthus nivalis agglutinin (GNA) to disrupt the feeding of the first stage larvae (L1) of the sheep gastro-intestinal nematodes (GIN) Teladorsagia circumcincta, Haemonchus contortus and Trichostrongylus colubriformis was investigated using a larval feeding inhibition test (LFIT). Only PHA-E3L, WGA and Con A had a potent effect on disrupting larval feeding of all of the three species of GIN investigated. The lectin concentration required to inhibit feeding in 50% of L1 (IC50) was 7.3±1.2, 8.3±1.4 and 4.3±1.7μg/ml for PHA-E3L; 59.1±32.4, 58.7±11.9 and 8.1±7.0μg/ml for Con A and 78.9±11.2, 69.4±8.1 and 28.0±14.1μg/ml for WGA for T. circumcincta, H. contortus and T. colubriformis larvae, respectively (P=0.006). The addition of the lectin inhibitors fetuin, glucose/mannose or N-acetylglucosamine for PHA-E3L, Con A and WGA, respectively, caused an increase in the proportion of larvae that had fed at all concentrations for PHA-E3L only. In experiment 2, the effect of extracts from the tropical plants Azadiractha indica, Trichanthera gigantea, Morus alba, Gliricidia sepium and Leucaena leucocephala on the feeding behaviour of H. contortus L1, was examined. A. indica, T. gigantea and M. alba failed to inhibit 50% of larvae from feeding at concentrations up to 10mg plant extract per ml. In contrast, both G. sepium and L. leucocephala demonstrated a dose-dependent effect on larval feeding with respective IC50 estimates (mean±s.e.) of 0.015mg/ml±0.001 and 3.465mg/ml±0.144, effects which were partly reversed by the inclusion of either the tannin inhibitor polyethylene glycol or the lectin inhibitor Fetuin. These studies demonstrate that plant lectins can have an inhibitory effect on the feeding behaviour of first stage larvae of ovine GIN in vitro. Moreover they also provide novel evidence that lectins may contribute to the anthelmintic properties of some tropical forage plant extracts, such as G. sepium and L. leucocephala.</description><subject>agglutinins</subject><subject>albumins</subject><subject>Animals</subject><subject>anthelmintics</subject><subject>Anthelmintics - chemistry</subject><subject>Anthelmintics - pharmacology</subject><subject>concanavalin A</subject><subject>Eriocaulon</subject><subject>feeding behavior</subject><subject>fetuins</subject><subject>forage</subject><subject>Galanthus nivalis</subject><subject>Gastrointestinal nematodes</subject><subject>Gliricidia sepium</subject><subject>glucose</subject><subject>Haemonchus contortus</subject><subject>In vitro</subject><subject>kidney beans</subject><subject>Larva - drug effects</subject><subject>larvae</subject><subject>larval development</subject><subject>Larval feeding inhibition test</subject><subject>Leucaena leucocephala</subject><subject>Maackia amurensis</subject><subject>Maclura pomifera</subject><subject>Macrotyloma uniflorum</subject><subject>Morus alba</subject><subject>N-acetylglucosamine</subject><subject>Nematoda - drug effects</subject><subject>parasites</subject><subject>phytohemagglutinin</subject><subject>plant extracts</subject><subject>Plant Extracts - chemistry</subject><subject>Plant Extracts - pharmacology</subject><subject>Plant lectins</subject><subject>Plant Lectins - chemistry</subject><subject>Plant Lectins - pharmacology</subject><subject>Plant secondary metabolites</subject><subject>polyethylene glycol</subject><subject>Robinia pseudoacacia</subject><subject>secondary metabolites</subject><subject>sheep</subject><subject>tannins</subject><subject>Teladorsagia circumcincta</subject><subject>Trichostrongylus colubriformis</subject><subject>Tropical Climate</subject><subject>wheat germ</subject><issn>0304-4017</issn><issn>1873-2550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEtrGzEQgEVoiJ00_yC0Ovayjl6rtS-FYtrGEMghzakHoZVGqcx6dyvJJvn3HbNujoFh5jDfPPgIueFswRnXt9vFAcpo00IwzhcYjKkzMufLRlairtkHMmeSqUox3szIZc5bhgTTzQWZCcElk1LPye9NTw-xpIFmlwD62D_TIdCxs32hHbgS-0xt7ykiY3S2O7XgpSTrSqZhSNgvf6Dbxb5ER0cEIZUI-SM5D7bLcH2qV-Tpx_df67vq_uHnZv3tvnJyqUvllyoEp0VQQghXe7Wy0nKxEiB0aNpWKx-4bOvae92opmm9CLoVshWYWxvkFfky7cXTf_eQi9nF7KDDR2HYZ8MZW9VCLfkKUTWhLg05JwhmTHFn0ytC5qjVbM2k1Ry1GgyUhmOfThf27Q7829B_jwh8noBgB2OfU8zm6RE3KIb2VSNrJL5OBKCJQ4RksovQO_AxoWbjh_j-D_8AE-CViQ</recordid><startdate>20120525</startdate><enddate>20120525</enddate><creator>Ríos-de Álvarez, L.</creator><creator>Jackson, F.</creator><creator>Greer, A.</creator><creator>Bartley, Y.</creator><creator>Bartley, D.J.</creator><creator>Grant, G.</creator><creator>Huntley, J.F.</creator><general>Elsevier B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20120525</creationdate><title>In vitro screening of plant lectins and tropical plant extracts for anthelmintic properties</title><author>Ríos-de Álvarez, L. ; Jackson, F. ; Greer, A. ; Bartley, Y. ; Bartley, D.J. ; Grant, G. ; Huntley, J.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-d84ffc62f4222c5d49a3a1292e26f7bb64df13b55dd67477bd2f6b23b26b2baf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>agglutinins</topic><topic>albumins</topic><topic>Animals</topic><topic>anthelmintics</topic><topic>Anthelmintics - chemistry</topic><topic>Anthelmintics - pharmacology</topic><topic>concanavalin A</topic><topic>Eriocaulon</topic><topic>feeding behavior</topic><topic>fetuins</topic><topic>forage</topic><topic>Galanthus nivalis</topic><topic>Gastrointestinal nematodes</topic><topic>Gliricidia sepium</topic><topic>glucose</topic><topic>Haemonchus contortus</topic><topic>In vitro</topic><topic>kidney beans</topic><topic>Larva - drug effects</topic><topic>larvae</topic><topic>larval development</topic><topic>Larval feeding inhibition test</topic><topic>Leucaena leucocephala</topic><topic>Maackia amurensis</topic><topic>Maclura pomifera</topic><topic>Macrotyloma uniflorum</topic><topic>Morus alba</topic><topic>N-acetylglucosamine</topic><topic>Nematoda - drug effects</topic><topic>parasites</topic><topic>phytohemagglutinin</topic><topic>plant extracts</topic><topic>Plant Extracts - chemistry</topic><topic>Plant Extracts - pharmacology</topic><topic>Plant lectins</topic><topic>Plant Lectins - chemistry</topic><topic>Plant Lectins - pharmacology</topic><topic>Plant secondary metabolites</topic><topic>polyethylene glycol</topic><topic>Robinia pseudoacacia</topic><topic>secondary metabolites</topic><topic>sheep</topic><topic>tannins</topic><topic>Teladorsagia circumcincta</topic><topic>Trichostrongylus colubriformis</topic><topic>Tropical Climate</topic><topic>wheat germ</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ríos-de Álvarez, L.</creatorcontrib><creatorcontrib>Jackson, F.</creatorcontrib><creatorcontrib>Greer, A.</creatorcontrib><creatorcontrib>Bartley, Y.</creatorcontrib><creatorcontrib>Bartley, D.J.</creatorcontrib><creatorcontrib>Grant, G.</creatorcontrib><creatorcontrib>Huntley, J.F.</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Veterinary parasitology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ríos-de Álvarez, L.</au><au>Jackson, F.</au><au>Greer, A.</au><au>Bartley, Y.</au><au>Bartley, D.J.</au><au>Grant, G.</au><au>Huntley, J.F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In vitro screening of plant lectins and tropical plant extracts for anthelmintic properties</atitle><jtitle>Veterinary parasitology</jtitle><addtitle>Vet Parasitol</addtitle><date>2012-05-25</date><risdate>2012</risdate><volume>186</volume><issue>3-4</issue><spage>390</spage><epage>398</epage><pages>390-398</pages><issn>0304-4017</issn><eissn>1873-2550</eissn><abstract>Lectins are plant secondary metabolites (PSM) found in many forages and which may confer anthelmintic properties to gastrointestinal parasites through disrupting the development of parasitic larvae throughout its life cycle. In experiment 1, the ability of the plant lectins jacalin (JAC), concanavalin A (Con A), phytohemagglutinin E2L2 (PHA-E2L2), phytohemagglutinin L4 (PHA-L4), phytohemagglutinin E3L (PHA-E3L), kidney bean albumin (KBA), Robinia pseudoacacia agglutinin (RPA), Maackia amurensis lectin (MAA), Maclura pomifera agglutinin (MAA), Dolichos biflorus agglutinin (DBA), wheat germ agglutinin (WGA) and Galanthus nivalis agglutinin (GNA) to disrupt the feeding of the first stage larvae (L1) of the sheep gastro-intestinal nematodes (GIN) Teladorsagia circumcincta, Haemonchus contortus and Trichostrongylus colubriformis was investigated using a larval feeding inhibition test (LFIT). Only PHA-E3L, WGA and Con A had a potent effect on disrupting larval feeding of all of the three species of GIN investigated. The lectin concentration required to inhibit feeding in 50% of L1 (IC50) was 7.3±1.2, 8.3±1.4 and 4.3±1.7μg/ml for PHA-E3L; 59.1±32.4, 58.7±11.9 and 8.1±7.0μg/ml for Con A and 78.9±11.2, 69.4±8.1 and 28.0±14.1μg/ml for WGA for T. circumcincta, H. contortus and T. colubriformis larvae, respectively (P=0.006). The addition of the lectin inhibitors fetuin, glucose/mannose or N-acetylglucosamine for PHA-E3L, Con A and WGA, respectively, caused an increase in the proportion of larvae that had fed at all concentrations for PHA-E3L only. In experiment 2, the effect of extracts from the tropical plants Azadiractha indica, Trichanthera gigantea, Morus alba, Gliricidia sepium and Leucaena leucocephala on the feeding behaviour of H. contortus L1, was examined. A. indica, T. gigantea and M. alba failed to inhibit 50% of larvae from feeding at concentrations up to 10mg plant extract per ml. In contrast, both G. sepium and L. leucocephala demonstrated a dose-dependent effect on larval feeding with respective IC50 estimates (mean±s.e.) of 0.015mg/ml±0.001 and 3.465mg/ml±0.144, effects which were partly reversed by the inclusion of either the tannin inhibitor polyethylene glycol or the lectin inhibitor Fetuin. These studies demonstrate that plant lectins can have an inhibitory effect on the feeding behaviour of first stage larvae of ovine GIN in vitro. Moreover they also provide novel evidence that lectins may contribute to the anthelmintic properties of some tropical forage plant extracts, such as G. sepium and L. leucocephala.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>22130336</pmid><doi>10.1016/j.vetpar.2011.11.004</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0304-4017
ispartof Veterinary parasitology, 2012-05, Vol.186 (3-4), p.390-398
issn 0304-4017
1873-2550
language eng
recordid cdi_proquest_miscellaneous_1009524819
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects agglutinins
albumins
Animals
anthelmintics
Anthelmintics - chemistry
Anthelmintics - pharmacology
concanavalin A
Eriocaulon
feeding behavior
fetuins
forage
Galanthus nivalis
Gastrointestinal nematodes
Gliricidia sepium
glucose
Haemonchus contortus
In vitro
kidney beans
Larva - drug effects
larvae
larval development
Larval feeding inhibition test
Leucaena leucocephala
Maackia amurensis
Maclura pomifera
Macrotyloma uniflorum
Morus alba
N-acetylglucosamine
Nematoda - drug effects
parasites
phytohemagglutinin
plant extracts
Plant Extracts - chemistry
Plant Extracts - pharmacology
Plant lectins
Plant Lectins - chemistry
Plant Lectins - pharmacology
Plant secondary metabolites
polyethylene glycol
Robinia pseudoacacia
secondary metabolites
sheep
tannins
Teladorsagia circumcincta
Trichostrongylus colubriformis
Tropical Climate
wheat germ
title In vitro screening of plant lectins and tropical plant extracts for anthelmintic properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T11%3A19%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20vitro%20screening%20of%20plant%20lectins%20and%20tropical%20plant%20extracts%20for%20anthelmintic%20properties&rft.jtitle=Veterinary%20parasitology&rft.au=R%C3%ADos-de%20%C3%81lvarez,%20L.&rft.date=2012-05-25&rft.volume=186&rft.issue=3-4&rft.spage=390&rft.epage=398&rft.pages=390-398&rft.issn=0304-4017&rft.eissn=1873-2550&rft_id=info:doi/10.1016/j.vetpar.2011.11.004&rft_dat=%3Cproquest_cross%3E1009524819%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1009524819&rft_id=info:pmid/22130336&rft_els_id=S0304401711007199&rfr_iscdi=true