Hybrid computing: CPU+GPU co-processing and its application to tomographic reconstruction

Modern computers are equipped with powerful computing engines like multicore processors and GPUs. The 3DEM community has rapidly adapted to this scenario and many software packages now make use of high performance computing techniques to exploit these devices. However, the implementations thus far a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ultramicroscopy 2012-04, Vol.115, p.109-114
Hauptverfasser: Agulleiro, J.I., Vázquez, F., Garzón, E.M., Fernández, J.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 114
container_issue
container_start_page 109
container_title Ultramicroscopy
container_volume 115
creator Agulleiro, J.I.
Vázquez, F.
Garzón, E.M.
Fernández, J.J.
description Modern computers are equipped with powerful computing engines like multicore processors and GPUs. The 3DEM community has rapidly adapted to this scenario and many software packages now make use of high performance computing techniques to exploit these devices. However, the implementations thus far are purely focused on either GPUs or CPUs. This work presents a hybrid approach that collaboratively combines the GPUs and CPUs available in a computer and applies it to the problem of tomographic reconstruction. Proper orchestration of workload in such a heterogeneous system is an issue. Here we use an on-demand strategy whereby the computing devices request a new piece of work to do when idle. Our hybrid approach thus takes advantage of the whole computing power available in modern computers and further reduces the processing time. This CPU+GPU co-processing can be readily extended to other image processing tasks in 3DEM. ► Hybrid computing allows full exploitation of the power (CPU+GPU) in a computer. ► Proper orchestration of workload is managed by an on-demand strategy. ► Total number of threads running in the system should be limited to the number of CPUs.
doi_str_mv 10.1016/j.ultramic.2012.02.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1009131489</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304399112000344</els_id><sourcerecordid>1009131489</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-d90cdff8f290cf157b4d475ec29ea686f46a6593dc52f629c261cec3be84edd93</originalsourceid><addsrcrecordid>eNqFkE1rGzEQhkVJSFw3fyHssVDW1cdau-opxbRJIVAf4kNPQh7NujK7q42kDfjfV8Z2r4EXJGae-XoJuWd0wSiTX_eLqUvB9A4WnDK-oFlUfCAz1tSq5DUXV2RGBa1KoRS7JR9j3FNKGa2aG3LLeVUvRc1n5M_TYRucLcD345TcsPtWrNabL4_rTQ6VY_CAMeZwYQZbuBQLM46dA5OcH4rks3q_C2b866AICH6IKUxwzH4i163pIt6d3znZ_Pzxsnoqn38__lp9fy5ByCaVVlGwbdu0PH9atqy3lc3LIXCFRjayraSRSyUsLHkruQIuGSCILTYVWqvEnHw-9c3Lvk4Yk-5dBOw6M6CfomaUKiZY1RxReUIh-BgDtnoMrjfhkCF9tFXv9cVWfbRV0ywqcuH9eca07dH-L7v4mIGHE4D50jeHQUdwOABal11J2nr33ox_dGWOEg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1009131489</pqid></control><display><type>article</type><title>Hybrid computing: CPU+GPU co-processing and its application to tomographic reconstruction</title><source>Access via ScienceDirect (Elsevier)</source><creator>Agulleiro, J.I. ; Vázquez, F. ; Garzón, E.M. ; Fernández, J.J.</creator><creatorcontrib>Agulleiro, J.I. ; Vázquez, F. ; Garzón, E.M. ; Fernández, J.J.</creatorcontrib><description>Modern computers are equipped with powerful computing engines like multicore processors and GPUs. The 3DEM community has rapidly adapted to this scenario and many software packages now make use of high performance computing techniques to exploit these devices. However, the implementations thus far are purely focused on either GPUs or CPUs. This work presents a hybrid approach that collaboratively combines the GPUs and CPUs available in a computer and applies it to the problem of tomographic reconstruction. Proper orchestration of workload in such a heterogeneous system is an issue. Here we use an on-demand strategy whereby the computing devices request a new piece of work to do when idle. Our hybrid approach thus takes advantage of the whole computing power available in modern computers and further reduces the processing time. This CPU+GPU co-processing can be readily extended to other image processing tasks in 3DEM. ► Hybrid computing allows full exploitation of the power (CPU+GPU) in a computer. ► Proper orchestration of workload is managed by an on-demand strategy. ► Total number of threads running in the system should be limited to the number of CPUs.</description><identifier>ISSN: 0304-3991</identifier><identifier>EISSN: 1879-2723</identifier><identifier>DOI: 10.1016/j.ultramic.2012.02.003</identifier><identifier>PMID: 22475372</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>CPU ; CPU–GPU co-processing ; Electron tomography ; GPU ; High performance computing ; Hybrid computing ; Tomographic reconstruction</subject><ispartof>Ultramicroscopy, 2012-04, Vol.115, p.109-114</ispartof><rights>2012 Elsevier B.V.</rights><rights>Copyright © 2012 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-d90cdff8f290cf157b4d475ec29ea686f46a6593dc52f629c261cec3be84edd93</citedby><cites>FETCH-LOGICAL-c368t-d90cdff8f290cf157b4d475ec29ea686f46a6593dc52f629c261cec3be84edd93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ultramic.2012.02.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22475372$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Agulleiro, J.I.</creatorcontrib><creatorcontrib>Vázquez, F.</creatorcontrib><creatorcontrib>Garzón, E.M.</creatorcontrib><creatorcontrib>Fernández, J.J.</creatorcontrib><title>Hybrid computing: CPU+GPU co-processing and its application to tomographic reconstruction</title><title>Ultramicroscopy</title><addtitle>Ultramicroscopy</addtitle><description>Modern computers are equipped with powerful computing engines like multicore processors and GPUs. The 3DEM community has rapidly adapted to this scenario and many software packages now make use of high performance computing techniques to exploit these devices. However, the implementations thus far are purely focused on either GPUs or CPUs. This work presents a hybrid approach that collaboratively combines the GPUs and CPUs available in a computer and applies it to the problem of tomographic reconstruction. Proper orchestration of workload in such a heterogeneous system is an issue. Here we use an on-demand strategy whereby the computing devices request a new piece of work to do when idle. Our hybrid approach thus takes advantage of the whole computing power available in modern computers and further reduces the processing time. This CPU+GPU co-processing can be readily extended to other image processing tasks in 3DEM. ► Hybrid computing allows full exploitation of the power (CPU+GPU) in a computer. ► Proper orchestration of workload is managed by an on-demand strategy. ► Total number of threads running in the system should be limited to the number of CPUs.</description><subject>CPU</subject><subject>CPU–GPU co-processing</subject><subject>Electron tomography</subject><subject>GPU</subject><subject>High performance computing</subject><subject>Hybrid computing</subject><subject>Tomographic reconstruction</subject><issn>0304-3991</issn><issn>1879-2723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkE1rGzEQhkVJSFw3fyHssVDW1cdau-opxbRJIVAf4kNPQh7NujK7q42kDfjfV8Z2r4EXJGae-XoJuWd0wSiTX_eLqUvB9A4WnDK-oFlUfCAz1tSq5DUXV2RGBa1KoRS7JR9j3FNKGa2aG3LLeVUvRc1n5M_TYRucLcD345TcsPtWrNabL4_rTQ6VY_CAMeZwYQZbuBQLM46dA5OcH4rks3q_C2b866AICH6IKUxwzH4i163pIt6d3znZ_Pzxsnoqn38__lp9fy5ByCaVVlGwbdu0PH9atqy3lc3LIXCFRjayraSRSyUsLHkruQIuGSCILTYVWqvEnHw-9c3Lvk4Yk-5dBOw6M6CfomaUKiZY1RxReUIh-BgDtnoMrjfhkCF9tFXv9cVWfbRV0ywqcuH9eca07dH-L7v4mIGHE4D50jeHQUdwOABal11J2nr33ox_dGWOEg</recordid><startdate>201204</startdate><enddate>201204</enddate><creator>Agulleiro, J.I.</creator><creator>Vázquez, F.</creator><creator>Garzón, E.M.</creator><creator>Fernández, J.J.</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201204</creationdate><title>Hybrid computing: CPU+GPU co-processing and its application to tomographic reconstruction</title><author>Agulleiro, J.I. ; Vázquez, F. ; Garzón, E.M. ; Fernández, J.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-d90cdff8f290cf157b4d475ec29ea686f46a6593dc52f629c261cec3be84edd93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>CPU</topic><topic>CPU–GPU co-processing</topic><topic>Electron tomography</topic><topic>GPU</topic><topic>High performance computing</topic><topic>Hybrid computing</topic><topic>Tomographic reconstruction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agulleiro, J.I.</creatorcontrib><creatorcontrib>Vázquez, F.</creatorcontrib><creatorcontrib>Garzón, E.M.</creatorcontrib><creatorcontrib>Fernández, J.J.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Ultramicroscopy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Agulleiro, J.I.</au><au>Vázquez, F.</au><au>Garzón, E.M.</au><au>Fernández, J.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid computing: CPU+GPU co-processing and its application to tomographic reconstruction</atitle><jtitle>Ultramicroscopy</jtitle><addtitle>Ultramicroscopy</addtitle><date>2012-04</date><risdate>2012</risdate><volume>115</volume><spage>109</spage><epage>114</epage><pages>109-114</pages><issn>0304-3991</issn><eissn>1879-2723</eissn><abstract>Modern computers are equipped with powerful computing engines like multicore processors and GPUs. The 3DEM community has rapidly adapted to this scenario and many software packages now make use of high performance computing techniques to exploit these devices. However, the implementations thus far are purely focused on either GPUs or CPUs. This work presents a hybrid approach that collaboratively combines the GPUs and CPUs available in a computer and applies it to the problem of tomographic reconstruction. Proper orchestration of workload in such a heterogeneous system is an issue. Here we use an on-demand strategy whereby the computing devices request a new piece of work to do when idle. Our hybrid approach thus takes advantage of the whole computing power available in modern computers and further reduces the processing time. This CPU+GPU co-processing can be readily extended to other image processing tasks in 3DEM. ► Hybrid computing allows full exploitation of the power (CPU+GPU) in a computer. ► Proper orchestration of workload is managed by an on-demand strategy. ► Total number of threads running in the system should be limited to the number of CPUs.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>22475372</pmid><doi>10.1016/j.ultramic.2012.02.003</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0304-3991
ispartof Ultramicroscopy, 2012-04, Vol.115, p.109-114
issn 0304-3991
1879-2723
language eng
recordid cdi_proquest_miscellaneous_1009131489
source Access via ScienceDirect (Elsevier)
subjects CPU
CPU–GPU co-processing
Electron tomography
GPU
High performance computing
Hybrid computing
Tomographic reconstruction
title Hybrid computing: CPU+GPU co-processing and its application to tomographic reconstruction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T23%3A48%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20computing:%20CPU+GPU%20co-processing%20and%20its%20application%20to%20tomographic%20reconstruction&rft.jtitle=Ultramicroscopy&rft.au=Agulleiro,%20J.I.&rft.date=2012-04&rft.volume=115&rft.spage=109&rft.epage=114&rft.pages=109-114&rft.issn=0304-3991&rft.eissn=1879-2723&rft_id=info:doi/10.1016/j.ultramic.2012.02.003&rft_dat=%3Cproquest_cross%3E1009131489%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1009131489&rft_id=info:pmid/22475372&rft_els_id=S0304399112000344&rfr_iscdi=true