Stock return autocorrelations revisited: A quantile regression approach

The aim of this study is to provide a comprehensive description of the dependence pattern of stock returns by studying a range of quantiles of the conditional return distribution using quantile autoregression. This enables us to study the behavior of extreme quantiles associated with large positive...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of empirical finance 2012-03, Vol.19 (2), p.254-265
Hauptverfasser: Baur, Dirk G., Dimpfl, Thomas, Jung, Robert C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 265
container_issue 2
container_start_page 254
container_title Journal of empirical finance
container_volume 19
creator Baur, Dirk G.
Dimpfl, Thomas
Jung, Robert C.
description The aim of this study is to provide a comprehensive description of the dependence pattern of stock returns by studying a range of quantiles of the conditional return distribution using quantile autoregression. This enables us to study the behavior of extreme quantiles associated with large positive and negative returns in contrast to the central quantile which is closely related to the conditional mean in the least-squares regression framework. Our empirical results are based on 30years of daily, weekly and monthly returns of the stocks comprised in the Dow Jones Stoxx 600 index. We find that lower quantiles exhibit positive dependence on past returns while upper quantiles are marked by negative dependence. This pattern holds when accounting for stock specific characteristics such as market capitalization, industry, or exposure to market risk. ► We study the conditional distribution of stock returns using quantile autoregression. ► We distinguish the dependence of extreme quantiles and the median. ► Lower (upper) quantiles are marked by positive (negative) dependence on past returns. ► The pattern holds when accounting for certain stock specific characteristics.
doi_str_mv 10.1016/j.jempfin.2011.12.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1009126515</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927539811000971</els_id><sourcerecordid>1009126515</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-a46f6b07a55bf0019ee9f2fdaa85a0be66b7f6acd0d75f6af5aa8bdafac412643</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EEqXwE5AysiTYbhwnLKiqoCBVYgBm6-KcwSFNUtupxL_HVbsz3ddz7-leQm4ZzRhlxX2btbgdje0zThnLGM8o5WdkxkpZpUxyeU5mtOIyFYuqvCRX3reU0qLM5Yys38OgfxKHYXJ9AlOsBuewg2CH3sf-3nobsHlIlslugj7YDmP3y6H3kUhgHN0A-vuaXBjoPN6c4px8Pj99rF7Szdv6dbXcpDoXPKSQF6aoqQQhakMpqxArw00DUAqgNRZFLU0BuqGNFDExIk7qBgzonPEiX8zJ3VE3nt1N6IPaWq-x66DHYfKKUVpFUDARUXFEtRu8d2jU6OwW3G-E1ME41aqTcepgnGJcRePi3uNxD-Mfe4tOeW2x19hYhzqoZrD_KPwBwud8Cg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1009126515</pqid></control><display><type>article</type><title>Stock return autocorrelations revisited: A quantile regression approach</title><source>Elsevier ScienceDirect Journals</source><creator>Baur, Dirk G. ; Dimpfl, Thomas ; Jung, Robert C.</creator><creatorcontrib>Baur, Dirk G. ; Dimpfl, Thomas ; Jung, Robert C.</creatorcontrib><description>The aim of this study is to provide a comprehensive description of the dependence pattern of stock returns by studying a range of quantiles of the conditional return distribution using quantile autoregression. This enables us to study the behavior of extreme quantiles associated with large positive and negative returns in contrast to the central quantile which is closely related to the conditional mean in the least-squares regression framework. Our empirical results are based on 30years of daily, weekly and monthly returns of the stocks comprised in the Dow Jones Stoxx 600 index. We find that lower quantiles exhibit positive dependence on past returns while upper quantiles are marked by negative dependence. This pattern holds when accounting for stock specific characteristics such as market capitalization, industry, or exposure to market risk. ► We study the conditional distribution of stock returns using quantile autoregression. ► We distinguish the dependence of extreme quantiles and the median. ► Lower (upper) quantiles are marked by positive (negative) dependence on past returns. ► The pattern holds when accounting for certain stock specific characteristics.</description><identifier>ISSN: 0927-5398</identifier><identifier>EISSN: 1879-1727</identifier><identifier>DOI: 10.1016/j.jempfin.2011.12.002</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Capital market ; Causal analysis ; Distribution ; Economic activity ; Financial management ; Historical analysis ; Overreaction and underreaction ; Quantile autoregression ; Regression analysis ; Stock return distribution ; Stock returns</subject><ispartof>Journal of empirical finance, 2012-03, Vol.19 (2), p.254-265</ispartof><rights>2011 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-a46f6b07a55bf0019ee9f2fdaa85a0be66b7f6acd0d75f6af5aa8bdafac412643</citedby><cites>FETCH-LOGICAL-c452t-a46f6b07a55bf0019ee9f2fdaa85a0be66b7f6acd0d75f6af5aa8bdafac412643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jempfin.2011.12.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Baur, Dirk G.</creatorcontrib><creatorcontrib>Dimpfl, Thomas</creatorcontrib><creatorcontrib>Jung, Robert C.</creatorcontrib><title>Stock return autocorrelations revisited: A quantile regression approach</title><title>Journal of empirical finance</title><description>The aim of this study is to provide a comprehensive description of the dependence pattern of stock returns by studying a range of quantiles of the conditional return distribution using quantile autoregression. This enables us to study the behavior of extreme quantiles associated with large positive and negative returns in contrast to the central quantile which is closely related to the conditional mean in the least-squares regression framework. Our empirical results are based on 30years of daily, weekly and monthly returns of the stocks comprised in the Dow Jones Stoxx 600 index. We find that lower quantiles exhibit positive dependence on past returns while upper quantiles are marked by negative dependence. This pattern holds when accounting for stock specific characteristics such as market capitalization, industry, or exposure to market risk. ► We study the conditional distribution of stock returns using quantile autoregression. ► We distinguish the dependence of extreme quantiles and the median. ► Lower (upper) quantiles are marked by positive (negative) dependence on past returns. ► The pattern holds when accounting for certain stock specific characteristics.</description><subject>Capital market</subject><subject>Causal analysis</subject><subject>Distribution</subject><subject>Economic activity</subject><subject>Financial management</subject><subject>Historical analysis</subject><subject>Overreaction and underreaction</subject><subject>Quantile autoregression</subject><subject>Regression analysis</subject><subject>Stock return distribution</subject><subject>Stock returns</subject><issn>0927-5398</issn><issn>1879-1727</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQhi0EEqXwE5AysiTYbhwnLKiqoCBVYgBm6-KcwSFNUtupxL_HVbsz3ddz7-leQm4ZzRhlxX2btbgdje0zThnLGM8o5WdkxkpZpUxyeU5mtOIyFYuqvCRX3reU0qLM5Yys38OgfxKHYXJ9AlOsBuewg2CH3sf-3nobsHlIlslugj7YDmP3y6H3kUhgHN0A-vuaXBjoPN6c4px8Pj99rF7Szdv6dbXcpDoXPKSQF6aoqQQhakMpqxArw00DUAqgNRZFLU0BuqGNFDExIk7qBgzonPEiX8zJ3VE3nt1N6IPaWq-x66DHYfKKUVpFUDARUXFEtRu8d2jU6OwW3G-E1ME41aqTcepgnGJcRePi3uNxD-Mfe4tOeW2x19hYhzqoZrD_KPwBwud8Cg</recordid><startdate>20120301</startdate><enddate>20120301</enddate><creator>Baur, Dirk G.</creator><creator>Dimpfl, Thomas</creator><creator>Jung, Robert C.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20120301</creationdate><title>Stock return autocorrelations revisited: A quantile regression approach</title><author>Baur, Dirk G. ; Dimpfl, Thomas ; Jung, Robert C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-a46f6b07a55bf0019ee9f2fdaa85a0be66b7f6acd0d75f6af5aa8bdafac412643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Capital market</topic><topic>Causal analysis</topic><topic>Distribution</topic><topic>Economic activity</topic><topic>Financial management</topic><topic>Historical analysis</topic><topic>Overreaction and underreaction</topic><topic>Quantile autoregression</topic><topic>Regression analysis</topic><topic>Stock return distribution</topic><topic>Stock returns</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baur, Dirk G.</creatorcontrib><creatorcontrib>Dimpfl, Thomas</creatorcontrib><creatorcontrib>Jung, Robert C.</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of empirical finance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baur, Dirk G.</au><au>Dimpfl, Thomas</au><au>Jung, Robert C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stock return autocorrelations revisited: A quantile regression approach</atitle><jtitle>Journal of empirical finance</jtitle><date>2012-03-01</date><risdate>2012</risdate><volume>19</volume><issue>2</issue><spage>254</spage><epage>265</epage><pages>254-265</pages><issn>0927-5398</issn><eissn>1879-1727</eissn><abstract>The aim of this study is to provide a comprehensive description of the dependence pattern of stock returns by studying a range of quantiles of the conditional return distribution using quantile autoregression. This enables us to study the behavior of extreme quantiles associated with large positive and negative returns in contrast to the central quantile which is closely related to the conditional mean in the least-squares regression framework. Our empirical results are based on 30years of daily, weekly and monthly returns of the stocks comprised in the Dow Jones Stoxx 600 index. We find that lower quantiles exhibit positive dependence on past returns while upper quantiles are marked by negative dependence. This pattern holds when accounting for stock specific characteristics such as market capitalization, industry, or exposure to market risk. ► We study the conditional distribution of stock returns using quantile autoregression. ► We distinguish the dependence of extreme quantiles and the median. ► Lower (upper) quantiles are marked by positive (negative) dependence on past returns. ► The pattern holds when accounting for certain stock specific characteristics.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jempfin.2011.12.002</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0927-5398
ispartof Journal of empirical finance, 2012-03, Vol.19 (2), p.254-265
issn 0927-5398
1879-1727
language eng
recordid cdi_proquest_miscellaneous_1009126515
source Elsevier ScienceDirect Journals
subjects Capital market
Causal analysis
Distribution
Economic activity
Financial management
Historical analysis
Overreaction and underreaction
Quantile autoregression
Regression analysis
Stock return distribution
Stock returns
title Stock return autocorrelations revisited: A quantile regression approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T00%3A36%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stock%20return%20autocorrelations%20revisited:%20A%20quantile%20regression%20approach&rft.jtitle=Journal%20of%20empirical%20finance&rft.au=Baur,%20Dirk%20G.&rft.date=2012-03-01&rft.volume=19&rft.issue=2&rft.spage=254&rft.epage=265&rft.pages=254-265&rft.issn=0927-5398&rft.eissn=1879-1727&rft_id=info:doi/10.1016/j.jempfin.2011.12.002&rft_dat=%3Cproquest_cross%3E1009126515%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1009126515&rft_id=info:pmid/&rft_els_id=S0927539811000971&rfr_iscdi=true