Plant extinction risk under climate change: are forecast range shifts alone a good indicator of species vulnerability to global warming?
Models that couple habitat suitability with demographic processes offer a potentially improved approach for estimating spatial distributional shifts and extinction risk under climate change. Applying such an approach to five species of Australian plants with contrasting demographic traits, we show t...
Gespeichert in:
Veröffentlicht in: | Global change biology 2012-04, Vol.18 (4), p.1357-1371 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1371 |
---|---|
container_issue | 4 |
container_start_page | 1357 |
container_title | Global change biology |
container_volume | 18 |
creator | Fordham, Damien A. Resit Akçakaya, H. Araújo, Miguel B. Elith, Jane Keith, David A. Pearson, Richard Auld, Tony D. Mellin, Camille Morgan, John W. Regan, Tracey J. Tozer, Mark Watts, Michael J. White, Matthew Wintle, Brendan A. Yates, Colin Brook, Barry W. |
description | Models that couple habitat suitability with demographic processes offer a potentially improved approach for estimating spatial distributional shifts and extinction risk under climate change. Applying such an approach to five species of Australian plants with contrasting demographic traits, we show that: (i) predicted climate‐driven changes in range area are sensitive to the underlying habitat model, regardless of whether demographic traits and their interaction with habitat patch configuration are modeled explicitly; and (ii) caution should be exercised when using predicted changes in total habitat suitability or geographic extent to infer extinction risk, because the relationship between these metrics is often weak. Measures of extinction risk, which quantify threats to population persistence, are particularly sensitive to life‐history traits, such as recruitment response to fire, which explained approximately 60% of the deviance in expected minimum abundance. Dispersal dynamics and habitat patch structure have the strongest influence on the amount of movement of the trailing and leading edge of the range margin, explaining roughly 40% of modeled structural deviance. These results underscore the need to consider direct measures of extinction risk (population declines and other measures of stochastic viability), as well as measures of change in habitat area, when assessing climate change impacts on biodiversity. Furthermore, direct estimation of extinction risk incorporates important demographic and ecosystem processes, which potentially influence species’ vulnerability to extinction due to climate change. |
doi_str_mv | 10.1111/j.1365-2486.2011.02614.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1008834894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1008834894</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4414-610db15edff9140acf9c0c136acd9f37997cf8f2ea4480d3d76ee52642be35473</originalsourceid><addsrcrecordid>eNqNkVGP1CAUhRujievqf7gxMfGlFSilrYkx7qijyUZ90N1HwtDLLLNMGYG6M__Any11NvPgk7xwA985gXOKAiipaF6vNhWtRVMy3omKEUorwgTl1f5BcXa6eDjPDS8pofXj4kmMG0JIzYg4K35_c2pMgPtkR52sHyHYeAvTOGAA7exWJQR9o8Y1vgYVEIwPqFVMEOYziDfWpAjK-RFBwdr7Aew4WK2SD-ANxB1qixF-TW7EoFbW2XSA5GHt_Eo5uFNha8f126fFI6NcxGf3-3nx4-OH74tP5eXX5efFu8tSc055KSgZVrTBwZiecqK06TXR-adKD72p275vtekMQ8V5R4Z6aAViwwRnK8wRtPV58fLouwv-54Qxya2NGl2OAf0UJSWk62re9Tyjz_9BN34KY36d7FlHsh2doe4I6eBjDGjkLuTUwiE7ybkhuZFzEXIuQs4Nyb8NyX2Wvrj3V1ErZ3Ki2saTnjVCsKYXmXtz5O6sw8N_-8vl4mKesr486m1MuD_pVbiVoq3bRl5_WcqeX129X15fSFb_AchztKo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>928035414</pqid></control><display><type>article</type><title>Plant extinction risk under climate change: are forecast range shifts alone a good indicator of species vulnerability to global warming?</title><source>Access via Wiley Online Library</source><creator>Fordham, Damien A. ; Resit Akçakaya, H. ; Araújo, Miguel B. ; Elith, Jane ; Keith, David A. ; Pearson, Richard ; Auld, Tony D. ; Mellin, Camille ; Morgan, John W. ; Regan, Tracey J. ; Tozer, Mark ; Watts, Michael J. ; White, Matthew ; Wintle, Brendan A. ; Yates, Colin ; Brook, Barry W.</creator><creatorcontrib>Fordham, Damien A. ; Resit Akçakaya, H. ; Araújo, Miguel B. ; Elith, Jane ; Keith, David A. ; Pearson, Richard ; Auld, Tony D. ; Mellin, Camille ; Morgan, John W. ; Regan, Tracey J. ; Tozer, Mark ; Watts, Michael J. ; White, Matthew ; Wintle, Brendan A. ; Yates, Colin ; Brook, Barry W.</creatorcontrib><description>Models that couple habitat suitability with demographic processes offer a potentially improved approach for estimating spatial distributional shifts and extinction risk under climate change. Applying such an approach to five species of Australian plants with contrasting demographic traits, we show that: (i) predicted climate‐driven changes in range area are sensitive to the underlying habitat model, regardless of whether demographic traits and their interaction with habitat patch configuration are modeled explicitly; and (ii) caution should be exercised when using predicted changes in total habitat suitability or geographic extent to infer extinction risk, because the relationship between these metrics is often weak. Measures of extinction risk, which quantify threats to population persistence, are particularly sensitive to life‐history traits, such as recruitment response to fire, which explained approximately 60% of the deviance in expected minimum abundance. Dispersal dynamics and habitat patch structure have the strongest influence on the amount of movement of the trailing and leading edge of the range margin, explaining roughly 40% of modeled structural deviance. These results underscore the need to consider direct measures of extinction risk (population declines and other measures of stochastic viability), as well as measures of change in habitat area, when assessing climate change impacts on biodiversity. Furthermore, direct estimation of extinction risk incorporates important demographic and ecosystem processes, which potentially influence species’ vulnerability to extinction due to climate change.</description><identifier>ISSN: 1354-1013</identifier><identifier>EISSN: 1365-2486</identifier><identifier>DOI: 10.1111/j.1365-2486.2011.02614.x</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>abundance ; Animal and plant ecology ; Animal, plant and microbial ecology ; bioclimate envelope ; Biodiversity ; Biological and medical sciences ; Climate change ; Climatology. Bioclimatology. Climate change ; connectivity ; coupled niche-population model ; Dispersal ; Earth, ocean, space ; Endangered & extinct species ; Exact sciences and technology ; External geophysics ; Extinction ; Flowers & plants ; Fundamental and applied biological sciences. Psychology ; General aspects ; habitat suitability ; mechanistic model ; metapopulation ; Meteorology ; population viability analysis ; species distribution model</subject><ispartof>Global change biology, 2012-04, Vol.18 (4), p.1357-1371</ispartof><rights>2011 Blackwell Publishing Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2012 Blackwell Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4414-610db15edff9140acf9c0c136acd9f37997cf8f2ea4480d3d76ee52642be35473</citedby><cites>FETCH-LOGICAL-c4414-610db15edff9140acf9c0c136acd9f37997cf8f2ea4480d3d76ee52642be35473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-2486.2011.02614.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-2486.2011.02614.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25662596$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Fordham, Damien A.</creatorcontrib><creatorcontrib>Resit Akçakaya, H.</creatorcontrib><creatorcontrib>Araújo, Miguel B.</creatorcontrib><creatorcontrib>Elith, Jane</creatorcontrib><creatorcontrib>Keith, David A.</creatorcontrib><creatorcontrib>Pearson, Richard</creatorcontrib><creatorcontrib>Auld, Tony D.</creatorcontrib><creatorcontrib>Mellin, Camille</creatorcontrib><creatorcontrib>Morgan, John W.</creatorcontrib><creatorcontrib>Regan, Tracey J.</creatorcontrib><creatorcontrib>Tozer, Mark</creatorcontrib><creatorcontrib>Watts, Michael J.</creatorcontrib><creatorcontrib>White, Matthew</creatorcontrib><creatorcontrib>Wintle, Brendan A.</creatorcontrib><creatorcontrib>Yates, Colin</creatorcontrib><creatorcontrib>Brook, Barry W.</creatorcontrib><title>Plant extinction risk under climate change: are forecast range shifts alone a good indicator of species vulnerability to global warming?</title><title>Global change biology</title><addtitle>Glob Change Biol</addtitle><description>Models that couple habitat suitability with demographic processes offer a potentially improved approach for estimating spatial distributional shifts and extinction risk under climate change. Applying such an approach to five species of Australian plants with contrasting demographic traits, we show that: (i) predicted climate‐driven changes in range area are sensitive to the underlying habitat model, regardless of whether demographic traits and their interaction with habitat patch configuration are modeled explicitly; and (ii) caution should be exercised when using predicted changes in total habitat suitability or geographic extent to infer extinction risk, because the relationship between these metrics is often weak. Measures of extinction risk, which quantify threats to population persistence, are particularly sensitive to life‐history traits, such as recruitment response to fire, which explained approximately 60% of the deviance in expected minimum abundance. Dispersal dynamics and habitat patch structure have the strongest influence on the amount of movement of the trailing and leading edge of the range margin, explaining roughly 40% of modeled structural deviance. These results underscore the need to consider direct measures of extinction risk (population declines and other measures of stochastic viability), as well as measures of change in habitat area, when assessing climate change impacts on biodiversity. Furthermore, direct estimation of extinction risk incorporates important demographic and ecosystem processes, which potentially influence species’ vulnerability to extinction due to climate change.</description><subject>abundance</subject><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>bioclimate envelope</subject><subject>Biodiversity</subject><subject>Biological and medical sciences</subject><subject>Climate change</subject><subject>Climatology. Bioclimatology. Climate change</subject><subject>connectivity</subject><subject>coupled niche-population model</subject><subject>Dispersal</subject><subject>Earth, ocean, space</subject><subject>Endangered & extinct species</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Extinction</subject><subject>Flowers & plants</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>habitat suitability</subject><subject>mechanistic model</subject><subject>metapopulation</subject><subject>Meteorology</subject><subject>population viability analysis</subject><subject>species distribution model</subject><issn>1354-1013</issn><issn>1365-2486</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNkVGP1CAUhRujievqf7gxMfGlFSilrYkx7qijyUZ90N1HwtDLLLNMGYG6M__Any11NvPgk7xwA985gXOKAiipaF6vNhWtRVMy3omKEUorwgTl1f5BcXa6eDjPDS8pofXj4kmMG0JIzYg4K35_c2pMgPtkR52sHyHYeAvTOGAA7exWJQR9o8Y1vgYVEIwPqFVMEOYziDfWpAjK-RFBwdr7Aew4WK2SD-ANxB1qixF-TW7EoFbW2XSA5GHt_Eo5uFNha8f126fFI6NcxGf3-3nx4-OH74tP5eXX5efFu8tSc055KSgZVrTBwZiecqK06TXR-adKD72p275vtekMQ8V5R4Z6aAViwwRnK8wRtPV58fLouwv-54Qxya2NGl2OAf0UJSWk62re9Tyjz_9BN34KY36d7FlHsh2doe4I6eBjDGjkLuTUwiE7ybkhuZFzEXIuQs4Nyb8NyX2Wvrj3V1ErZ3Ki2saTnjVCsKYXmXtz5O6sw8N_-8vl4mKesr486m1MuD_pVbiVoq3bRl5_WcqeX129X15fSFb_AchztKo</recordid><startdate>201204</startdate><enddate>201204</enddate><creator>Fordham, Damien A.</creator><creator>Resit Akçakaya, H.</creator><creator>Araújo, Miguel B.</creator><creator>Elith, Jane</creator><creator>Keith, David A.</creator><creator>Pearson, Richard</creator><creator>Auld, Tony D.</creator><creator>Mellin, Camille</creator><creator>Morgan, John W.</creator><creator>Regan, Tracey J.</creator><creator>Tozer, Mark</creator><creator>Watts, Michael J.</creator><creator>White, Matthew</creator><creator>Wintle, Brendan A.</creator><creator>Yates, Colin</creator><creator>Brook, Barry W.</creator><general>Blackwell Publishing Ltd</general><general>Wiley-Blackwell</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>7ST</scope><scope>7TG</scope><scope>7TV</scope><scope>7U1</scope><scope>7U2</scope><scope>7U6</scope><scope>KL.</scope><scope>SOI</scope></search><sort><creationdate>201204</creationdate><title>Plant extinction risk under climate change: are forecast range shifts alone a good indicator of species vulnerability to global warming?</title><author>Fordham, Damien A. ; Resit Akçakaya, H. ; Araújo, Miguel B. ; Elith, Jane ; Keith, David A. ; Pearson, Richard ; Auld, Tony D. ; Mellin, Camille ; Morgan, John W. ; Regan, Tracey J. ; Tozer, Mark ; Watts, Michael J. ; White, Matthew ; Wintle, Brendan A. ; Yates, Colin ; Brook, Barry W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4414-610db15edff9140acf9c0c136acd9f37997cf8f2ea4480d3d76ee52642be35473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>abundance</topic><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>bioclimate envelope</topic><topic>Biodiversity</topic><topic>Biological and medical sciences</topic><topic>Climate change</topic><topic>Climatology. Bioclimatology. Climate change</topic><topic>connectivity</topic><topic>coupled niche-population model</topic><topic>Dispersal</topic><topic>Earth, ocean, space</topic><topic>Endangered & extinct species</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Extinction</topic><topic>Flowers & plants</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>habitat suitability</topic><topic>mechanistic model</topic><topic>metapopulation</topic><topic>Meteorology</topic><topic>population viability analysis</topic><topic>species distribution model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fordham, Damien A.</creatorcontrib><creatorcontrib>Resit Akçakaya, H.</creatorcontrib><creatorcontrib>Araújo, Miguel B.</creatorcontrib><creatorcontrib>Elith, Jane</creatorcontrib><creatorcontrib>Keith, David A.</creatorcontrib><creatorcontrib>Pearson, Richard</creatorcontrib><creatorcontrib>Auld, Tony D.</creatorcontrib><creatorcontrib>Mellin, Camille</creatorcontrib><creatorcontrib>Morgan, John W.</creatorcontrib><creatorcontrib>Regan, Tracey J.</creatorcontrib><creatorcontrib>Tozer, Mark</creatorcontrib><creatorcontrib>Watts, Michael J.</creatorcontrib><creatorcontrib>White, Matthew</creatorcontrib><creatorcontrib>Wintle, Brendan A.</creatorcontrib><creatorcontrib>Yates, Colin</creatorcontrib><creatorcontrib>Brook, Barry W.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Pollution Abstracts</collection><collection>Risk Abstracts</collection><collection>Safety Science and Risk</collection><collection>Sustainability Science Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Environment Abstracts</collection><jtitle>Global change biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fordham, Damien A.</au><au>Resit Akçakaya, H.</au><au>Araújo, Miguel B.</au><au>Elith, Jane</au><au>Keith, David A.</au><au>Pearson, Richard</au><au>Auld, Tony D.</au><au>Mellin, Camille</au><au>Morgan, John W.</au><au>Regan, Tracey J.</au><au>Tozer, Mark</au><au>Watts, Michael J.</au><au>White, Matthew</au><au>Wintle, Brendan A.</au><au>Yates, Colin</au><au>Brook, Barry W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plant extinction risk under climate change: are forecast range shifts alone a good indicator of species vulnerability to global warming?</atitle><jtitle>Global change biology</jtitle><addtitle>Glob Change Biol</addtitle><date>2012-04</date><risdate>2012</risdate><volume>18</volume><issue>4</issue><spage>1357</spage><epage>1371</epage><pages>1357-1371</pages><issn>1354-1013</issn><eissn>1365-2486</eissn><abstract>Models that couple habitat suitability with demographic processes offer a potentially improved approach for estimating spatial distributional shifts and extinction risk under climate change. Applying such an approach to five species of Australian plants with contrasting demographic traits, we show that: (i) predicted climate‐driven changes in range area are sensitive to the underlying habitat model, regardless of whether demographic traits and their interaction with habitat patch configuration are modeled explicitly; and (ii) caution should be exercised when using predicted changes in total habitat suitability or geographic extent to infer extinction risk, because the relationship between these metrics is often weak. Measures of extinction risk, which quantify threats to population persistence, are particularly sensitive to life‐history traits, such as recruitment response to fire, which explained approximately 60% of the deviance in expected minimum abundance. Dispersal dynamics and habitat patch structure have the strongest influence on the amount of movement of the trailing and leading edge of the range margin, explaining roughly 40% of modeled structural deviance. These results underscore the need to consider direct measures of extinction risk (population declines and other measures of stochastic viability), as well as measures of change in habitat area, when assessing climate change impacts on biodiversity. Furthermore, direct estimation of extinction risk incorporates important demographic and ecosystem processes, which potentially influence species’ vulnerability to extinction due to climate change.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1365-2486.2011.02614.x</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1354-1013 |
ispartof | Global change biology, 2012-04, Vol.18 (4), p.1357-1371 |
issn | 1354-1013 1365-2486 |
language | eng |
recordid | cdi_proquest_miscellaneous_1008834894 |
source | Access via Wiley Online Library |
subjects | abundance Animal and plant ecology Animal, plant and microbial ecology bioclimate envelope Biodiversity Biological and medical sciences Climate change Climatology. Bioclimatology. Climate change connectivity coupled niche-population model Dispersal Earth, ocean, space Endangered & extinct species Exact sciences and technology External geophysics Extinction Flowers & plants Fundamental and applied biological sciences. Psychology General aspects habitat suitability mechanistic model metapopulation Meteorology population viability analysis species distribution model |
title | Plant extinction risk under climate change: are forecast range shifts alone a good indicator of species vulnerability to global warming? |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T20%3A10%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plant%20extinction%20risk%20under%20climate%20change:%20are%20forecast%20range%20shifts%20alone%20a%20good%20indicator%20of%20species%20vulnerability%20to%20global%20warming?&rft.jtitle=Global%20change%20biology&rft.au=Fordham,%20Damien%20A.&rft.date=2012-04&rft.volume=18&rft.issue=4&rft.spage=1357&rft.epage=1371&rft.pages=1357-1371&rft.issn=1354-1013&rft.eissn=1365-2486&rft_id=info:doi/10.1111/j.1365-2486.2011.02614.x&rft_dat=%3Cproquest_cross%3E1008834894%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=928035414&rft_id=info:pmid/&rfr_iscdi=true |