Plant extinction risk under climate change: are forecast range shifts alone a good indicator of species vulnerability to global warming?

Models that couple habitat suitability with demographic processes offer a potentially improved approach for estimating spatial distributional shifts and extinction risk under climate change. Applying such an approach to five species of Australian plants with contrasting demographic traits, we show t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Global change biology 2012-04, Vol.18 (4), p.1357-1371
Hauptverfasser: Fordham, Damien A., Resit Akçakaya, H., Araújo, Miguel B., Elith, Jane, Keith, David A., Pearson, Richard, Auld, Tony D., Mellin, Camille, Morgan, John W., Regan, Tracey J., Tozer, Mark, Watts, Michael J., White, Matthew, Wintle, Brendan A., Yates, Colin, Brook, Barry W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1371
container_issue 4
container_start_page 1357
container_title Global change biology
container_volume 18
creator Fordham, Damien A.
Resit Akçakaya, H.
Araújo, Miguel B.
Elith, Jane
Keith, David A.
Pearson, Richard
Auld, Tony D.
Mellin, Camille
Morgan, John W.
Regan, Tracey J.
Tozer, Mark
Watts, Michael J.
White, Matthew
Wintle, Brendan A.
Yates, Colin
Brook, Barry W.
description Models that couple habitat suitability with demographic processes offer a potentially improved approach for estimating spatial distributional shifts and extinction risk under climate change. Applying such an approach to five species of Australian plants with contrasting demographic traits, we show that: (i) predicted climate‐driven changes in range area are sensitive to the underlying habitat model, regardless of whether demographic traits and their interaction with habitat patch configuration are modeled explicitly; and (ii) caution should be exercised when using predicted changes in total habitat suitability or geographic extent to infer extinction risk, because the relationship between these metrics is often weak. Measures of extinction risk, which quantify threats to population persistence, are particularly sensitive to life‐history traits, such as recruitment response to fire, which explained approximately 60% of the deviance in expected minimum abundance. Dispersal dynamics and habitat patch structure have the strongest influence on the amount of movement of the trailing and leading edge of the range margin, explaining roughly 40% of modeled structural deviance. These results underscore the need to consider direct measures of extinction risk (population declines and other measures of stochastic viability), as well as measures of change in habitat area, when assessing climate change impacts on biodiversity. Furthermore, direct estimation of extinction risk incorporates important demographic and ecosystem processes, which potentially influence species’ vulnerability to extinction due to climate change.
doi_str_mv 10.1111/j.1365-2486.2011.02614.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1008834894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1008834894</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4414-610db15edff9140acf9c0c136acd9f37997cf8f2ea4480d3d76ee52642be35473</originalsourceid><addsrcrecordid>eNqNkVGP1CAUhRujievqf7gxMfGlFSilrYkx7qijyUZ90N1HwtDLLLNMGYG6M__Any11NvPgk7xwA985gXOKAiipaF6vNhWtRVMy3omKEUorwgTl1f5BcXa6eDjPDS8pofXj4kmMG0JIzYg4K35_c2pMgPtkR52sHyHYeAvTOGAA7exWJQR9o8Y1vgYVEIwPqFVMEOYziDfWpAjK-RFBwdr7Aew4WK2SD-ANxB1qixF-TW7EoFbW2XSA5GHt_Eo5uFNha8f126fFI6NcxGf3-3nx4-OH74tP5eXX5efFu8tSc055KSgZVrTBwZiecqK06TXR-adKD72p275vtekMQ8V5R4Z6aAViwwRnK8wRtPV58fLouwv-54Qxya2NGl2OAf0UJSWk62re9Tyjz_9BN34KY36d7FlHsh2doe4I6eBjDGjkLuTUwiE7ybkhuZFzEXIuQs4Nyb8NyX2Wvrj3V1ErZ3Ki2saTnjVCsKYXmXtz5O6sw8N_-8vl4mKesr486m1MuD_pVbiVoq3bRl5_WcqeX129X15fSFb_AchztKo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>928035414</pqid></control><display><type>article</type><title>Plant extinction risk under climate change: are forecast range shifts alone a good indicator of species vulnerability to global warming?</title><source>Access via Wiley Online Library</source><creator>Fordham, Damien A. ; Resit Akçakaya, H. ; Araújo, Miguel B. ; Elith, Jane ; Keith, David A. ; Pearson, Richard ; Auld, Tony D. ; Mellin, Camille ; Morgan, John W. ; Regan, Tracey J. ; Tozer, Mark ; Watts, Michael J. ; White, Matthew ; Wintle, Brendan A. ; Yates, Colin ; Brook, Barry W.</creator><creatorcontrib>Fordham, Damien A. ; Resit Akçakaya, H. ; Araújo, Miguel B. ; Elith, Jane ; Keith, David A. ; Pearson, Richard ; Auld, Tony D. ; Mellin, Camille ; Morgan, John W. ; Regan, Tracey J. ; Tozer, Mark ; Watts, Michael J. ; White, Matthew ; Wintle, Brendan A. ; Yates, Colin ; Brook, Barry W.</creatorcontrib><description>Models that couple habitat suitability with demographic processes offer a potentially improved approach for estimating spatial distributional shifts and extinction risk under climate change. Applying such an approach to five species of Australian plants with contrasting demographic traits, we show that: (i) predicted climate‐driven changes in range area are sensitive to the underlying habitat model, regardless of whether demographic traits and their interaction with habitat patch configuration are modeled explicitly; and (ii) caution should be exercised when using predicted changes in total habitat suitability or geographic extent to infer extinction risk, because the relationship between these metrics is often weak. Measures of extinction risk, which quantify threats to population persistence, are particularly sensitive to life‐history traits, such as recruitment response to fire, which explained approximately 60% of the deviance in expected minimum abundance. Dispersal dynamics and habitat patch structure have the strongest influence on the amount of movement of the trailing and leading edge of the range margin, explaining roughly 40% of modeled structural deviance. These results underscore the need to consider direct measures of extinction risk (population declines and other measures of stochastic viability), as well as measures of change in habitat area, when assessing climate change impacts on biodiversity. Furthermore, direct estimation of extinction risk incorporates important demographic and ecosystem processes, which potentially influence species’ vulnerability to extinction due to climate change.</description><identifier>ISSN: 1354-1013</identifier><identifier>EISSN: 1365-2486</identifier><identifier>DOI: 10.1111/j.1365-2486.2011.02614.x</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>abundance ; Animal and plant ecology ; Animal, plant and microbial ecology ; bioclimate envelope ; Biodiversity ; Biological and medical sciences ; Climate change ; Climatology. Bioclimatology. Climate change ; connectivity ; coupled niche-population model ; Dispersal ; Earth, ocean, space ; Endangered &amp; extinct species ; Exact sciences and technology ; External geophysics ; Extinction ; Flowers &amp; plants ; Fundamental and applied biological sciences. Psychology ; General aspects ; habitat suitability ; mechanistic model ; metapopulation ; Meteorology ; population viability analysis ; species distribution model</subject><ispartof>Global change biology, 2012-04, Vol.18 (4), p.1357-1371</ispartof><rights>2011 Blackwell Publishing Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2012 Blackwell Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4414-610db15edff9140acf9c0c136acd9f37997cf8f2ea4480d3d76ee52642be35473</citedby><cites>FETCH-LOGICAL-c4414-610db15edff9140acf9c0c136acd9f37997cf8f2ea4480d3d76ee52642be35473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-2486.2011.02614.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-2486.2011.02614.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25662596$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Fordham, Damien A.</creatorcontrib><creatorcontrib>Resit Akçakaya, H.</creatorcontrib><creatorcontrib>Araújo, Miguel B.</creatorcontrib><creatorcontrib>Elith, Jane</creatorcontrib><creatorcontrib>Keith, David A.</creatorcontrib><creatorcontrib>Pearson, Richard</creatorcontrib><creatorcontrib>Auld, Tony D.</creatorcontrib><creatorcontrib>Mellin, Camille</creatorcontrib><creatorcontrib>Morgan, John W.</creatorcontrib><creatorcontrib>Regan, Tracey J.</creatorcontrib><creatorcontrib>Tozer, Mark</creatorcontrib><creatorcontrib>Watts, Michael J.</creatorcontrib><creatorcontrib>White, Matthew</creatorcontrib><creatorcontrib>Wintle, Brendan A.</creatorcontrib><creatorcontrib>Yates, Colin</creatorcontrib><creatorcontrib>Brook, Barry W.</creatorcontrib><title>Plant extinction risk under climate change: are forecast range shifts alone a good indicator of species vulnerability to global warming?</title><title>Global change biology</title><addtitle>Glob Change Biol</addtitle><description>Models that couple habitat suitability with demographic processes offer a potentially improved approach for estimating spatial distributional shifts and extinction risk under climate change. Applying such an approach to five species of Australian plants with contrasting demographic traits, we show that: (i) predicted climate‐driven changes in range area are sensitive to the underlying habitat model, regardless of whether demographic traits and their interaction with habitat patch configuration are modeled explicitly; and (ii) caution should be exercised when using predicted changes in total habitat suitability or geographic extent to infer extinction risk, because the relationship between these metrics is often weak. Measures of extinction risk, which quantify threats to population persistence, are particularly sensitive to life‐history traits, such as recruitment response to fire, which explained approximately 60% of the deviance in expected minimum abundance. Dispersal dynamics and habitat patch structure have the strongest influence on the amount of movement of the trailing and leading edge of the range margin, explaining roughly 40% of modeled structural deviance. These results underscore the need to consider direct measures of extinction risk (population declines and other measures of stochastic viability), as well as measures of change in habitat area, when assessing climate change impacts on biodiversity. Furthermore, direct estimation of extinction risk incorporates important demographic and ecosystem processes, which potentially influence species’ vulnerability to extinction due to climate change.</description><subject>abundance</subject><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>bioclimate envelope</subject><subject>Biodiversity</subject><subject>Biological and medical sciences</subject><subject>Climate change</subject><subject>Climatology. Bioclimatology. Climate change</subject><subject>connectivity</subject><subject>coupled niche-population model</subject><subject>Dispersal</subject><subject>Earth, ocean, space</subject><subject>Endangered &amp; extinct species</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Extinction</subject><subject>Flowers &amp; plants</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>habitat suitability</subject><subject>mechanistic model</subject><subject>metapopulation</subject><subject>Meteorology</subject><subject>population viability analysis</subject><subject>species distribution model</subject><issn>1354-1013</issn><issn>1365-2486</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNkVGP1CAUhRujievqf7gxMfGlFSilrYkx7qijyUZ90N1HwtDLLLNMGYG6M__Any11NvPgk7xwA985gXOKAiipaF6vNhWtRVMy3omKEUorwgTl1f5BcXa6eDjPDS8pofXj4kmMG0JIzYg4K35_c2pMgPtkR52sHyHYeAvTOGAA7exWJQR9o8Y1vgYVEIwPqFVMEOYziDfWpAjK-RFBwdr7Aew4WK2SD-ANxB1qixF-TW7EoFbW2XSA5GHt_Eo5uFNha8f126fFI6NcxGf3-3nx4-OH74tP5eXX5efFu8tSc055KSgZVrTBwZiecqK06TXR-adKD72p275vtekMQ8V5R4Z6aAViwwRnK8wRtPV58fLouwv-54Qxya2NGl2OAf0UJSWk62re9Tyjz_9BN34KY36d7FlHsh2doe4I6eBjDGjkLuTUwiE7ybkhuZFzEXIuQs4Nyb8NyX2Wvrj3V1ErZ3Ki2saTnjVCsKYXmXtz5O6sw8N_-8vl4mKesr486m1MuD_pVbiVoq3bRl5_WcqeX129X15fSFb_AchztKo</recordid><startdate>201204</startdate><enddate>201204</enddate><creator>Fordham, Damien A.</creator><creator>Resit Akçakaya, H.</creator><creator>Araújo, Miguel B.</creator><creator>Elith, Jane</creator><creator>Keith, David A.</creator><creator>Pearson, Richard</creator><creator>Auld, Tony D.</creator><creator>Mellin, Camille</creator><creator>Morgan, John W.</creator><creator>Regan, Tracey J.</creator><creator>Tozer, Mark</creator><creator>Watts, Michael J.</creator><creator>White, Matthew</creator><creator>Wintle, Brendan A.</creator><creator>Yates, Colin</creator><creator>Brook, Barry W.</creator><general>Blackwell Publishing Ltd</general><general>Wiley-Blackwell</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>7ST</scope><scope>7TG</scope><scope>7TV</scope><scope>7U1</scope><scope>7U2</scope><scope>7U6</scope><scope>KL.</scope><scope>SOI</scope></search><sort><creationdate>201204</creationdate><title>Plant extinction risk under climate change: are forecast range shifts alone a good indicator of species vulnerability to global warming?</title><author>Fordham, Damien A. ; Resit Akçakaya, H. ; Araújo, Miguel B. ; Elith, Jane ; Keith, David A. ; Pearson, Richard ; Auld, Tony D. ; Mellin, Camille ; Morgan, John W. ; Regan, Tracey J. ; Tozer, Mark ; Watts, Michael J. ; White, Matthew ; Wintle, Brendan A. ; Yates, Colin ; Brook, Barry W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4414-610db15edff9140acf9c0c136acd9f37997cf8f2ea4480d3d76ee52642be35473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>abundance</topic><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>bioclimate envelope</topic><topic>Biodiversity</topic><topic>Biological and medical sciences</topic><topic>Climate change</topic><topic>Climatology. Bioclimatology. Climate change</topic><topic>connectivity</topic><topic>coupled niche-population model</topic><topic>Dispersal</topic><topic>Earth, ocean, space</topic><topic>Endangered &amp; extinct species</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Extinction</topic><topic>Flowers &amp; plants</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>habitat suitability</topic><topic>mechanistic model</topic><topic>metapopulation</topic><topic>Meteorology</topic><topic>population viability analysis</topic><topic>species distribution model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fordham, Damien A.</creatorcontrib><creatorcontrib>Resit Akçakaya, H.</creatorcontrib><creatorcontrib>Araújo, Miguel B.</creatorcontrib><creatorcontrib>Elith, Jane</creatorcontrib><creatorcontrib>Keith, David A.</creatorcontrib><creatorcontrib>Pearson, Richard</creatorcontrib><creatorcontrib>Auld, Tony D.</creatorcontrib><creatorcontrib>Mellin, Camille</creatorcontrib><creatorcontrib>Morgan, John W.</creatorcontrib><creatorcontrib>Regan, Tracey J.</creatorcontrib><creatorcontrib>Tozer, Mark</creatorcontrib><creatorcontrib>Watts, Michael J.</creatorcontrib><creatorcontrib>White, Matthew</creatorcontrib><creatorcontrib>Wintle, Brendan A.</creatorcontrib><creatorcontrib>Yates, Colin</creatorcontrib><creatorcontrib>Brook, Barry W.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Pollution Abstracts</collection><collection>Risk Abstracts</collection><collection>Safety Science and Risk</collection><collection>Sustainability Science Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Environment Abstracts</collection><jtitle>Global change biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fordham, Damien A.</au><au>Resit Akçakaya, H.</au><au>Araújo, Miguel B.</au><au>Elith, Jane</au><au>Keith, David A.</au><au>Pearson, Richard</au><au>Auld, Tony D.</au><au>Mellin, Camille</au><au>Morgan, John W.</au><au>Regan, Tracey J.</au><au>Tozer, Mark</au><au>Watts, Michael J.</au><au>White, Matthew</au><au>Wintle, Brendan A.</au><au>Yates, Colin</au><au>Brook, Barry W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plant extinction risk under climate change: are forecast range shifts alone a good indicator of species vulnerability to global warming?</atitle><jtitle>Global change biology</jtitle><addtitle>Glob Change Biol</addtitle><date>2012-04</date><risdate>2012</risdate><volume>18</volume><issue>4</issue><spage>1357</spage><epage>1371</epage><pages>1357-1371</pages><issn>1354-1013</issn><eissn>1365-2486</eissn><abstract>Models that couple habitat suitability with demographic processes offer a potentially improved approach for estimating spatial distributional shifts and extinction risk under climate change. Applying such an approach to five species of Australian plants with contrasting demographic traits, we show that: (i) predicted climate‐driven changes in range area are sensitive to the underlying habitat model, regardless of whether demographic traits and their interaction with habitat patch configuration are modeled explicitly; and (ii) caution should be exercised when using predicted changes in total habitat suitability or geographic extent to infer extinction risk, because the relationship between these metrics is often weak. Measures of extinction risk, which quantify threats to population persistence, are particularly sensitive to life‐history traits, such as recruitment response to fire, which explained approximately 60% of the deviance in expected minimum abundance. Dispersal dynamics and habitat patch structure have the strongest influence on the amount of movement of the trailing and leading edge of the range margin, explaining roughly 40% of modeled structural deviance. These results underscore the need to consider direct measures of extinction risk (population declines and other measures of stochastic viability), as well as measures of change in habitat area, when assessing climate change impacts on biodiversity. Furthermore, direct estimation of extinction risk incorporates important demographic and ecosystem processes, which potentially influence species’ vulnerability to extinction due to climate change.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1365-2486.2011.02614.x</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1354-1013
ispartof Global change biology, 2012-04, Vol.18 (4), p.1357-1371
issn 1354-1013
1365-2486
language eng
recordid cdi_proquest_miscellaneous_1008834894
source Access via Wiley Online Library
subjects abundance
Animal and plant ecology
Animal, plant and microbial ecology
bioclimate envelope
Biodiversity
Biological and medical sciences
Climate change
Climatology. Bioclimatology. Climate change
connectivity
coupled niche-population model
Dispersal
Earth, ocean, space
Endangered & extinct species
Exact sciences and technology
External geophysics
Extinction
Flowers & plants
Fundamental and applied biological sciences. Psychology
General aspects
habitat suitability
mechanistic model
metapopulation
Meteorology
population viability analysis
species distribution model
title Plant extinction risk under climate change: are forecast range shifts alone a good indicator of species vulnerability to global warming?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T20%3A10%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plant%20extinction%20risk%20under%20climate%20change:%20are%20forecast%20range%20shifts%20alone%20a%20good%20indicator%20of%20species%20vulnerability%20to%20global%20warming?&rft.jtitle=Global%20change%20biology&rft.au=Fordham,%20Damien%20A.&rft.date=2012-04&rft.volume=18&rft.issue=4&rft.spage=1357&rft.epage=1371&rft.pages=1357-1371&rft.issn=1354-1013&rft.eissn=1365-2486&rft_id=info:doi/10.1111/j.1365-2486.2011.02614.x&rft_dat=%3Cproquest_cross%3E1008834894%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=928035414&rft_id=info:pmid/&rfr_iscdi=true