A comparison of biocompatibility and osseointegration of ceramic and titanium implants: an in vivo and in vitro study
Abstract This study compared the biocompatibility in vitro and the osseointegration in vivo of zirconium and titanium implants regarding implant surfaces and the bone–implant contacts. The different implant surfaces and the biocompatibility of zirconium versus titanium implants were determined by vi...
Gespeichert in:
Veröffentlicht in: | International journal of oral and maxillofacial surgery 2012-05, Vol.41 (5), p.638-645 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 645 |
---|---|
container_issue | 5 |
container_start_page | 638 |
container_title | International journal of oral and maxillofacial surgery |
container_volume | 41 |
creator | Möller, B Terheyden, H Açil, Y Purcz, N.M Hertrampf, K Tabakov, A Behrens, E Wiltfang, J |
description | Abstract This study compared the biocompatibility in vitro and the osseointegration in vivo of zirconium and titanium implants regarding implant surfaces and the bone–implant contacts. The different implant surfaces and the biocompatibility of zirconium versus titanium implants were determined by vitality and cytotoxic tests in vitro . The contact of the osteoblasts to the implant surface was determined by scanning electron microscopy (SEM). The in vivo study for osseointegration was performed in domestic pigs over 4 and 12 weeks. In each animal, 4 zirconium and 4 titanium implants (WhiteSky, BlueSky, Bredent, Germany) were inserted in the os frontale and analysed by histomorphometry. Cytotoxicity and SEM showed good biocompatibility in relation to the investigated implant materials. Histological results showed direct bone–implant contact of the implant surfaces. The zirconium implants showed a slight delay in osseointegration in terms of bone–implant contact as measured by histomorphometry (after 4 weeks, zirconium (59.3 ± 4.6%) versus titanium (64.1 ± 3.9%); after 12 weeks, zirconium (67.1 ± 2.3%) versus titanium (73.6 ± 3.2%). A statistically significant difference between the two groups was not observed. The results indicated similar biocompatibility and osseointegration for zirconium compared to titanium implants. |
doi_str_mv | 10.1016/j.ijom.2012.02.004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1008830019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0901502712000690</els_id><sourcerecordid>1008830019</sourcerecordid><originalsourceid>FETCH-LOGICAL-c507t-35ceee3c3a2f77f9b5d0344a44164f4db0120bcf2d657e1f57565d8e5a4808593</originalsourceid><addsrcrecordid>eNp9kk2LFDEQhoMo7rj6BzxIXwQvPVY6SX-ILCyLX7DgQT2HdLpaauxOxiQ9MP_e9Myo4EEIJFQ9b6XqpRh7zmHLgdevd1va-XlbAa-2kA_IB2zDRdeVABU8ZBvogJcKquaKPYlxBwCdaJvH7KqqJNSVUBu23BbWz3sTKHpX-LHoyZ8CiXqaKB0L44bCx4ieXMLvISfOoMVgZrKnfKJkHC1zQfN-Mi7FNzlckCsOdPAn4vROwRcxLcPxKXs0minis8t9zb69f_f17mN5__nDp7vb-9IqaFIplEVEYYWpxqYZu14NIKQ0UvJajnLo8-TQ27EaatUgH1WjajW0qIxsoVWduGavznX3wf9cMCY9U7Q45R7RL1FzgLYVAHxFqzNqQ5424Kj3gWYTjhnSq916p1e79Wq3hnxAZtGLS_2ln3H4I_ntbwZeXgATrZnGYJyl-JdTLVdS1Jl7e-Ywu3EgDDpaQmdxoIA26cHT__u4-UduJ3KUf_yBR4w7vwSXfdZcxyzQX9bFWPci2wdQdyB-AU7zs8E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1008830019</pqid></control><display><type>article</type><title>A comparison of biocompatibility and osseointegration of ceramic and titanium implants: an in vivo and in vitro study</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Möller, B ; Terheyden, H ; Açil, Y ; Purcz, N.M ; Hertrampf, K ; Tabakov, A ; Behrens, E ; Wiltfang, J</creator><creatorcontrib>Möller, B ; Terheyden, H ; Açil, Y ; Purcz, N.M ; Hertrampf, K ; Tabakov, A ; Behrens, E ; Wiltfang, J</creatorcontrib><description>Abstract This study compared the biocompatibility in vitro and the osseointegration in vivo of zirconium and titanium implants regarding implant surfaces and the bone–implant contacts. The different implant surfaces and the biocompatibility of zirconium versus titanium implants were determined by vitality and cytotoxic tests in vitro . The contact of the osteoblasts to the implant surface was determined by scanning electron microscopy (SEM). The in vivo study for osseointegration was performed in domestic pigs over 4 and 12 weeks. In each animal, 4 zirconium and 4 titanium implants (WhiteSky, BlueSky, Bredent, Germany) were inserted in the os frontale and analysed by histomorphometry. Cytotoxicity and SEM showed good biocompatibility in relation to the investigated implant materials. Histological results showed direct bone–implant contact of the implant surfaces. The zirconium implants showed a slight delay in osseointegration in terms of bone–implant contact as measured by histomorphometry (after 4 weeks, zirconium (59.3 ± 4.6%) versus titanium (64.1 ± 3.9%); after 12 weeks, zirconium (67.1 ± 2.3%) versus titanium (73.6 ± 3.2%). A statistically significant difference between the two groups was not observed. The results indicated similar biocompatibility and osseointegration for zirconium compared to titanium implants.</description><identifier>ISSN: 0901-5027</identifier><identifier>EISSN: 1399-0020</identifier><identifier>DOI: 10.1016/j.ijom.2012.02.004</identifier><identifier>PMID: 22406235</identifier><identifier>CODEN: IJOSE9</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Animals ; biocompatibility ; Biocompatible Materials - chemistry ; Biocompatible Materials - toxicity ; Biological and medical sciences ; Bone Matrix - anatomy & histology ; Bromodeoxyuridine ; Cell Culture Techniques ; cell growth ; Cell Proliferation - drug effects ; Cell Survival - drug effects ; Ceramics - chemistry ; Ceramics - toxicity ; Coloring Agents ; Dental Implants ; Dental Materials - chemistry ; Dental Materials - toxicity ; Dental Prosthesis Design ; Dentistry ; Female ; Fluoresceins ; Fluorescent Dyes ; Frontal Bone - anatomy & histology ; Frontal Bone - surgery ; Head and neck surgery. Maxillofacial surgery. Dental surgery. Orthodontics ; Humans ; L-Lactate Dehydrogenase - analysis ; Materials Testing ; Maxillofacial surgery. Dental surgery. Orthodontics ; Medical sciences ; Microscopy, Electron, Scanning ; Models, Animal ; osseointegration ; Osseointegration - physiology ; Osteoblasts - drug effects ; Osteoblasts - ultrastructure ; Osteocalcin - analysis ; Otorhinolaryngology. Stomatology ; Surgery ; Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases ; Swine ; Tetrazolium Salts ; Thiazoles ; Time Factors ; Titanium - chemistry ; Titanium - toxicity ; zirconia ; Zirconium - chemistry ; Zirconium - toxicity</subject><ispartof>International journal of oral and maxillofacial surgery, 2012-05, Vol.41 (5), p.638-645</ispartof><rights>International Association of Oral and Maxillofacial Surgeons</rights><rights>2012 International Association of Oral and Maxillofacial Surgeons</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2012 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c507t-35ceee3c3a2f77f9b5d0344a44164f4db0120bcf2d657e1f57565d8e5a4808593</citedby><cites>FETCH-LOGICAL-c507t-35ceee3c3a2f77f9b5d0344a44164f4db0120bcf2d657e1f57565d8e5a4808593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0901502712000690$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25815436$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22406235$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Möller, B</creatorcontrib><creatorcontrib>Terheyden, H</creatorcontrib><creatorcontrib>Açil, Y</creatorcontrib><creatorcontrib>Purcz, N.M</creatorcontrib><creatorcontrib>Hertrampf, K</creatorcontrib><creatorcontrib>Tabakov, A</creatorcontrib><creatorcontrib>Behrens, E</creatorcontrib><creatorcontrib>Wiltfang, J</creatorcontrib><title>A comparison of biocompatibility and osseointegration of ceramic and titanium implants: an in vivo and in vitro study</title><title>International journal of oral and maxillofacial surgery</title><addtitle>Int J Oral Maxillofac Surg</addtitle><description>Abstract This study compared the biocompatibility in vitro and the osseointegration in vivo of zirconium and titanium implants regarding implant surfaces and the bone–implant contacts. The different implant surfaces and the biocompatibility of zirconium versus titanium implants were determined by vitality and cytotoxic tests in vitro . The contact of the osteoblasts to the implant surface was determined by scanning electron microscopy (SEM). The in vivo study for osseointegration was performed in domestic pigs over 4 and 12 weeks. In each animal, 4 zirconium and 4 titanium implants (WhiteSky, BlueSky, Bredent, Germany) were inserted in the os frontale and analysed by histomorphometry. Cytotoxicity and SEM showed good biocompatibility in relation to the investigated implant materials. Histological results showed direct bone–implant contact of the implant surfaces. The zirconium implants showed a slight delay in osseointegration in terms of bone–implant contact as measured by histomorphometry (after 4 weeks, zirconium (59.3 ± 4.6%) versus titanium (64.1 ± 3.9%); after 12 weeks, zirconium (67.1 ± 2.3%) versus titanium (73.6 ± 3.2%). A statistically significant difference between the two groups was not observed. The results indicated similar biocompatibility and osseointegration for zirconium compared to titanium implants.</description><subject>Animals</subject><subject>biocompatibility</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biocompatible Materials - toxicity</subject><subject>Biological and medical sciences</subject><subject>Bone Matrix - anatomy & histology</subject><subject>Bromodeoxyuridine</subject><subject>Cell Culture Techniques</subject><subject>cell growth</subject><subject>Cell Proliferation - drug effects</subject><subject>Cell Survival - drug effects</subject><subject>Ceramics - chemistry</subject><subject>Ceramics - toxicity</subject><subject>Coloring Agents</subject><subject>Dental Implants</subject><subject>Dental Materials - chemistry</subject><subject>Dental Materials - toxicity</subject><subject>Dental Prosthesis Design</subject><subject>Dentistry</subject><subject>Female</subject><subject>Fluoresceins</subject><subject>Fluorescent Dyes</subject><subject>Frontal Bone - anatomy & histology</subject><subject>Frontal Bone - surgery</subject><subject>Head and neck surgery. Maxillofacial surgery. Dental surgery. Orthodontics</subject><subject>Humans</subject><subject>L-Lactate Dehydrogenase - analysis</subject><subject>Materials Testing</subject><subject>Maxillofacial surgery. Dental surgery. Orthodontics</subject><subject>Medical sciences</subject><subject>Microscopy, Electron, Scanning</subject><subject>Models, Animal</subject><subject>osseointegration</subject><subject>Osseointegration - physiology</subject><subject>Osteoblasts - drug effects</subject><subject>Osteoblasts - ultrastructure</subject><subject>Osteocalcin - analysis</subject><subject>Otorhinolaryngology. Stomatology</subject><subject>Surgery</subject><subject>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</subject><subject>Swine</subject><subject>Tetrazolium Salts</subject><subject>Thiazoles</subject><subject>Time Factors</subject><subject>Titanium - chemistry</subject><subject>Titanium - toxicity</subject><subject>zirconia</subject><subject>Zirconium - chemistry</subject><subject>Zirconium - toxicity</subject><issn>0901-5027</issn><issn>1399-0020</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kk2LFDEQhoMo7rj6BzxIXwQvPVY6SX-ILCyLX7DgQT2HdLpaauxOxiQ9MP_e9Myo4EEIJFQ9b6XqpRh7zmHLgdevd1va-XlbAa-2kA_IB2zDRdeVABU8ZBvogJcKquaKPYlxBwCdaJvH7KqqJNSVUBu23BbWz3sTKHpX-LHoyZ8CiXqaKB0L44bCx4ieXMLvISfOoMVgZrKnfKJkHC1zQfN-Mi7FNzlckCsOdPAn4vROwRcxLcPxKXs0minis8t9zb69f_f17mN5__nDp7vb-9IqaFIplEVEYYWpxqYZu14NIKQ0UvJajnLo8-TQ27EaatUgH1WjajW0qIxsoVWduGavznX3wf9cMCY9U7Q45R7RL1FzgLYVAHxFqzNqQ5424Kj3gWYTjhnSq916p1e79Wq3hnxAZtGLS_2ln3H4I_ntbwZeXgATrZnGYJyl-JdTLVdS1Jl7e-Ywu3EgDDpaQmdxoIA26cHT__u4-UduJ3KUf_yBR4w7vwSXfdZcxyzQX9bFWPci2wdQdyB-AU7zs8E</recordid><startdate>20120501</startdate><enddate>20120501</enddate><creator>Möller, B</creator><creator>Terheyden, H</creator><creator>Açil, Y</creator><creator>Purcz, N.M</creator><creator>Hertrampf, K</creator><creator>Tabakov, A</creator><creator>Behrens, E</creator><creator>Wiltfang, J</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20120501</creationdate><title>A comparison of biocompatibility and osseointegration of ceramic and titanium implants: an in vivo and in vitro study</title><author>Möller, B ; Terheyden, H ; Açil, Y ; Purcz, N.M ; Hertrampf, K ; Tabakov, A ; Behrens, E ; Wiltfang, J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c507t-35ceee3c3a2f77f9b5d0344a44164f4db0120bcf2d657e1f57565d8e5a4808593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>biocompatibility</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biocompatible Materials - toxicity</topic><topic>Biological and medical sciences</topic><topic>Bone Matrix - anatomy & histology</topic><topic>Bromodeoxyuridine</topic><topic>Cell Culture Techniques</topic><topic>cell growth</topic><topic>Cell Proliferation - drug effects</topic><topic>Cell Survival - drug effects</topic><topic>Ceramics - chemistry</topic><topic>Ceramics - toxicity</topic><topic>Coloring Agents</topic><topic>Dental Implants</topic><topic>Dental Materials - chemistry</topic><topic>Dental Materials - toxicity</topic><topic>Dental Prosthesis Design</topic><topic>Dentistry</topic><topic>Female</topic><topic>Fluoresceins</topic><topic>Fluorescent Dyes</topic><topic>Frontal Bone - anatomy & histology</topic><topic>Frontal Bone - surgery</topic><topic>Head and neck surgery. Maxillofacial surgery. Dental surgery. Orthodontics</topic><topic>Humans</topic><topic>L-Lactate Dehydrogenase - analysis</topic><topic>Materials Testing</topic><topic>Maxillofacial surgery. Dental surgery. Orthodontics</topic><topic>Medical sciences</topic><topic>Microscopy, Electron, Scanning</topic><topic>Models, Animal</topic><topic>osseointegration</topic><topic>Osseointegration - physiology</topic><topic>Osteoblasts - drug effects</topic><topic>Osteoblasts - ultrastructure</topic><topic>Osteocalcin - analysis</topic><topic>Otorhinolaryngology. Stomatology</topic><topic>Surgery</topic><topic>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</topic><topic>Swine</topic><topic>Tetrazolium Salts</topic><topic>Thiazoles</topic><topic>Time Factors</topic><topic>Titanium - chemistry</topic><topic>Titanium - toxicity</topic><topic>zirconia</topic><topic>Zirconium - chemistry</topic><topic>Zirconium - toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Möller, B</creatorcontrib><creatorcontrib>Terheyden, H</creatorcontrib><creatorcontrib>Açil, Y</creatorcontrib><creatorcontrib>Purcz, N.M</creatorcontrib><creatorcontrib>Hertrampf, K</creatorcontrib><creatorcontrib>Tabakov, A</creatorcontrib><creatorcontrib>Behrens, E</creatorcontrib><creatorcontrib>Wiltfang, J</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>International journal of oral and maxillofacial surgery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Möller, B</au><au>Terheyden, H</au><au>Açil, Y</au><au>Purcz, N.M</au><au>Hertrampf, K</au><au>Tabakov, A</au><au>Behrens, E</au><au>Wiltfang, J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A comparison of biocompatibility and osseointegration of ceramic and titanium implants: an in vivo and in vitro study</atitle><jtitle>International journal of oral and maxillofacial surgery</jtitle><addtitle>Int J Oral Maxillofac Surg</addtitle><date>2012-05-01</date><risdate>2012</risdate><volume>41</volume><issue>5</issue><spage>638</spage><epage>645</epage><pages>638-645</pages><issn>0901-5027</issn><eissn>1399-0020</eissn><coden>IJOSE9</coden><abstract>Abstract This study compared the biocompatibility in vitro and the osseointegration in vivo of zirconium and titanium implants regarding implant surfaces and the bone–implant contacts. The different implant surfaces and the biocompatibility of zirconium versus titanium implants were determined by vitality and cytotoxic tests in vitro . The contact of the osteoblasts to the implant surface was determined by scanning electron microscopy (SEM). The in vivo study for osseointegration was performed in domestic pigs over 4 and 12 weeks. In each animal, 4 zirconium and 4 titanium implants (WhiteSky, BlueSky, Bredent, Germany) were inserted in the os frontale and analysed by histomorphometry. Cytotoxicity and SEM showed good biocompatibility in relation to the investigated implant materials. Histological results showed direct bone–implant contact of the implant surfaces. The zirconium implants showed a slight delay in osseointegration in terms of bone–implant contact as measured by histomorphometry (after 4 weeks, zirconium (59.3 ± 4.6%) versus titanium (64.1 ± 3.9%); after 12 weeks, zirconium (67.1 ± 2.3%) versus titanium (73.6 ± 3.2%). A statistically significant difference between the two groups was not observed. The results indicated similar biocompatibility and osseointegration for zirconium compared to titanium implants.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>22406235</pmid><doi>10.1016/j.ijom.2012.02.004</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0901-5027 |
ispartof | International journal of oral and maxillofacial surgery, 2012-05, Vol.41 (5), p.638-645 |
issn | 0901-5027 1399-0020 |
language | eng |
recordid | cdi_proquest_miscellaneous_1008830019 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Animals biocompatibility Biocompatible Materials - chemistry Biocompatible Materials - toxicity Biological and medical sciences Bone Matrix - anatomy & histology Bromodeoxyuridine Cell Culture Techniques cell growth Cell Proliferation - drug effects Cell Survival - drug effects Ceramics - chemistry Ceramics - toxicity Coloring Agents Dental Implants Dental Materials - chemistry Dental Materials - toxicity Dental Prosthesis Design Dentistry Female Fluoresceins Fluorescent Dyes Frontal Bone - anatomy & histology Frontal Bone - surgery Head and neck surgery. Maxillofacial surgery. Dental surgery. Orthodontics Humans L-Lactate Dehydrogenase - analysis Materials Testing Maxillofacial surgery. Dental surgery. Orthodontics Medical sciences Microscopy, Electron, Scanning Models, Animal osseointegration Osseointegration - physiology Osteoblasts - drug effects Osteoblasts - ultrastructure Osteocalcin - analysis Otorhinolaryngology. Stomatology Surgery Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases Swine Tetrazolium Salts Thiazoles Time Factors Titanium - chemistry Titanium - toxicity zirconia Zirconium - chemistry Zirconium - toxicity |
title | A comparison of biocompatibility and osseointegration of ceramic and titanium implants: an in vivo and in vitro study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T10%3A05%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20comparison%20of%20biocompatibility%20and%20osseointegration%20of%20ceramic%20and%20titanium%20implants:%20an%20in%20vivo%20and%20in%20vitro%20study&rft.jtitle=International%20journal%20of%20oral%20and%20maxillofacial%20surgery&rft.au=M%C3%B6ller,%20B&rft.date=2012-05-01&rft.volume=41&rft.issue=5&rft.spage=638&rft.epage=645&rft.pages=638-645&rft.issn=0901-5027&rft.eissn=1399-0020&rft.coden=IJOSE9&rft_id=info:doi/10.1016/j.ijom.2012.02.004&rft_dat=%3Cproquest_cross%3E1008830019%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1008830019&rft_id=info:pmid/22406235&rft_els_id=S0901502712000690&rfr_iscdi=true |