Independent Contrasts and PGLS Regression Estimators Are Equivalent
We prove that the slope parameter of the ordinary least squares regression of phylogenetically independent contrasts (PICs) conducted through the origin is identical to the slope parameter of the method of generalized least squares (GLSs) regression under a Brownian motion model of evolution. This e...
Gespeichert in:
Veröffentlicht in: | Systematic biology 2012-05, Vol.61 (3), p.382-391 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 391 |
---|---|
container_issue | 3 |
container_start_page | 382 |
container_title | Systematic biology |
container_volume | 61 |
creator | Blomberg, Simon P Lefevre, James G Wells, Jessie A Waterhouse, Mary |
description | We prove that the slope parameter of the ordinary least squares regression of phylogenetically independent contrasts (PICs) conducted through the origin is identical to the slope parameter of the method of generalized least squares (GLSs) regression under a Brownian motion model of evolution. This equivalence has several implications: 1. Understanding the structure of the linear model for GLS regression provides insight into when and why phylogeny is important in comparative studies. 2. The limitations of the PIC regression analysis are the same as the limitations of the GLS model. In particular, phylogenetic covariance applies only to the response variable in the regression and the explanatory variable should be regarded as fixed. Calculation of PICs for explanatory variables should be treated as a mathematical idiosyncrasy of the PIC regression algorithm. 3. Since the GLS estimator is the best linear unbiased estimator (BLUE), the slope parameter estimated using PICs is also BLUE. 4. If the slope is estimated using different branch lengths for the explanatory and response variables in the PIC algorithm, the estimator is no longer the BLUE, so this is not recommended. Finally, we discuss whether or not and how to accommodate phylogenetic covariance in regression analyses, particularly in relation to the problem of phylogenetic uncertainty. This discussion is from both frequentist and Bayesian perspectives. |
doi_str_mv | 10.1093/sysbio/syr118 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1008825178</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41515209</jstor_id><oup_id>10.1093/sysbio/syr118</oup_id><sourcerecordid>41515209</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-ecff07cb15cdcbe5c288dc74481b596cfeaabccdf54765c43ba5415a9a0032593</originalsourceid><addsrcrecordid>eNqFkc9LwzAUx4MoOqdHj2rBi5fqe2nTpscx5g8YKM6Bt5KmqXRszZbXCv73ZnQqePGSF9775Mv7fsPYGcINQhbd0icVtfXFIco9NkBIk1BGydv-9p5EoUCRHrFjogUAYiLwkB1xzn2Xw4CNH5vSrI0_mjYY26Z1iloKVFMGz_fTWfBi3p0hqm0TTKitV6q1joKRM8Fk09UfaunfnbCDSi3JnO7qkM3vJq_jh3D6dP84Hk1DHQO0odFVBakuUOhSF0ZoLmWp0ziWWIgs0ZVRqtC6rEScJkLHUaFEjEJlCiDiIouG7LrXXTu76Qy1-aombZZL1RjbUY4AUnKBqfTo1R90YTvX-O22VCYlZoCeCntKO0vkTJWvnbfoPj2Ub9PN-3TzPl3PX-xUu2Jlyh_6O87fDW23_lfrvEcX5CP9gb1hFBy2Zi_7eaVsrt5dTfl8xgET8N8YySyNvgCqfZhP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1009881901</pqid></control><display><type>article</type><title>Independent Contrasts and PGLS Regression Estimators Are Equivalent</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Alma/SFX Local Collection</source><creator>Blomberg, Simon P ; Lefevre, James G ; Wells, Jessie A ; Waterhouse, Mary</creator><creatorcontrib>Blomberg, Simon P ; Lefevre, James G ; Wells, Jessie A ; Waterhouse, Mary</creatorcontrib><description>We prove that the slope parameter of the ordinary least squares regression of phylogenetically independent contrasts (PICs) conducted through the origin is identical to the slope parameter of the method of generalized least squares (GLSs) regression under a Brownian motion model of evolution. This equivalence has several implications: 1. Understanding the structure of the linear model for GLS regression provides insight into when and why phylogeny is important in comparative studies. 2. The limitations of the PIC regression analysis are the same as the limitations of the GLS model. In particular, phylogenetic covariance applies only to the response variable in the regression and the explanatory variable should be regarded as fixed. Calculation of PICs for explanatory variables should be treated as a mathematical idiosyncrasy of the PIC regression algorithm. 3. Since the GLS estimator is the best linear unbiased estimator (BLUE), the slope parameter estimated using PICs is also BLUE. 4. If the slope is estimated using different branch lengths for the explanatory and response variables in the PIC algorithm, the estimator is no longer the BLUE, so this is not recommended. Finally, we discuss whether or not and how to accommodate phylogenetic covariance in regression analyses, particularly in relation to the problem of phylogenetic uncertainty. This discussion is from both frequentist and Bayesian perspectives.</description><identifier>ISSN: 1063-5157</identifier><identifier>EISSN: 1076-836X</identifier><identifier>DOI: 10.1093/sysbio/syr118</identifier><identifier>PMID: 22215720</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Algorithms ; Bayes Theorem ; Brownian motion ; Classification - methods ; Comparative analysis ; Computer Simulation ; Covariance ; Covariance matrices ; Data Interpretation, Statistical ; Estimators ; Evolution ; Least squares ; Least-Squares Analysis ; linear models ; Linear regression ; Parameter estimation ; Phylogenetics ; Phylogeny ; Regression analysis ; Statistical variance ; Unbiased estimators ; uncertainty</subject><ispartof>Systematic biology, 2012-05, Vol.61 (3), p.382-391</ispartof><rights>Copyright © 2012 Society of Systematic Biologists</rights><rights>The Author(s) 2012. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2012</rights><rights>Copyright Oxford University Press, UK May 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-ecff07cb15cdcbe5c288dc74481b596cfeaabccdf54765c43ba5415a9a0032593</citedby><cites>FETCH-LOGICAL-c400t-ecff07cb15cdcbe5c288dc74481b596cfeaabccdf54765c43ba5415a9a0032593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41515209$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41515209$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,1584,27924,27925,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22215720$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Blomberg, Simon P</creatorcontrib><creatorcontrib>Lefevre, James G</creatorcontrib><creatorcontrib>Wells, Jessie A</creatorcontrib><creatorcontrib>Waterhouse, Mary</creatorcontrib><title>Independent Contrasts and PGLS Regression Estimators Are Equivalent</title><title>Systematic biology</title><addtitle>Syst Biol</addtitle><description>We prove that the slope parameter of the ordinary least squares regression of phylogenetically independent contrasts (PICs) conducted through the origin is identical to the slope parameter of the method of generalized least squares (GLSs) regression under a Brownian motion model of evolution. This equivalence has several implications: 1. Understanding the structure of the linear model for GLS regression provides insight into when and why phylogeny is important in comparative studies. 2. The limitations of the PIC regression analysis are the same as the limitations of the GLS model. In particular, phylogenetic covariance applies only to the response variable in the regression and the explanatory variable should be regarded as fixed. Calculation of PICs for explanatory variables should be treated as a mathematical idiosyncrasy of the PIC regression algorithm. 3. Since the GLS estimator is the best linear unbiased estimator (BLUE), the slope parameter estimated using PICs is also BLUE. 4. If the slope is estimated using different branch lengths for the explanatory and response variables in the PIC algorithm, the estimator is no longer the BLUE, so this is not recommended. Finally, we discuss whether or not and how to accommodate phylogenetic covariance in regression analyses, particularly in relation to the problem of phylogenetic uncertainty. This discussion is from both frequentist and Bayesian perspectives.</description><subject>Algorithms</subject><subject>Bayes Theorem</subject><subject>Brownian motion</subject><subject>Classification - methods</subject><subject>Comparative analysis</subject><subject>Computer Simulation</subject><subject>Covariance</subject><subject>Covariance matrices</subject><subject>Data Interpretation, Statistical</subject><subject>Estimators</subject><subject>Evolution</subject><subject>Least squares</subject><subject>Least-Squares Analysis</subject><subject>linear models</subject><subject>Linear regression</subject><subject>Parameter estimation</subject><subject>Phylogenetics</subject><subject>Phylogeny</subject><subject>Regression analysis</subject><subject>Statistical variance</subject><subject>Unbiased estimators</subject><subject>uncertainty</subject><issn>1063-5157</issn><issn>1076-836X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc9LwzAUx4MoOqdHj2rBi5fqe2nTpscx5g8YKM6Bt5KmqXRszZbXCv73ZnQqePGSF9775Mv7fsPYGcINQhbd0icVtfXFIco9NkBIk1BGydv-9p5EoUCRHrFjogUAYiLwkB1xzn2Xw4CNH5vSrI0_mjYY26Z1iloKVFMGz_fTWfBi3p0hqm0TTKitV6q1joKRM8Fk09UfaunfnbCDSi3JnO7qkM3vJq_jh3D6dP84Hk1DHQO0odFVBakuUOhSF0ZoLmWp0ziWWIgs0ZVRqtC6rEScJkLHUaFEjEJlCiDiIouG7LrXXTu76Qy1-aombZZL1RjbUY4AUnKBqfTo1R90YTvX-O22VCYlZoCeCntKO0vkTJWvnbfoPj2Ub9PN-3TzPl3PX-xUu2Jlyh_6O87fDW23_lfrvEcX5CP9gb1hFBy2Zi_7eaVsrt5dTfl8xgET8N8YySyNvgCqfZhP</recordid><startdate>20120501</startdate><enddate>20120501</enddate><creator>Blomberg, Simon P</creator><creator>Lefevre, James G</creator><creator>Wells, Jessie A</creator><creator>Waterhouse, Mary</creator><general>Oxford University Press</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20120501</creationdate><title>Independent Contrasts and PGLS Regression Estimators Are Equivalent</title><author>Blomberg, Simon P ; Lefevre, James G ; Wells, Jessie A ; Waterhouse, Mary</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-ecff07cb15cdcbe5c288dc74481b596cfeaabccdf54765c43ba5415a9a0032593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Bayes Theorem</topic><topic>Brownian motion</topic><topic>Classification - methods</topic><topic>Comparative analysis</topic><topic>Computer Simulation</topic><topic>Covariance</topic><topic>Covariance matrices</topic><topic>Data Interpretation, Statistical</topic><topic>Estimators</topic><topic>Evolution</topic><topic>Least squares</topic><topic>Least-Squares Analysis</topic><topic>linear models</topic><topic>Linear regression</topic><topic>Parameter estimation</topic><topic>Phylogenetics</topic><topic>Phylogeny</topic><topic>Regression analysis</topic><topic>Statistical variance</topic><topic>Unbiased estimators</topic><topic>uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blomberg, Simon P</creatorcontrib><creatorcontrib>Lefevre, James G</creatorcontrib><creatorcontrib>Wells, Jessie A</creatorcontrib><creatorcontrib>Waterhouse, Mary</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Systematic biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blomberg, Simon P</au><au>Lefevre, James G</au><au>Wells, Jessie A</au><au>Waterhouse, Mary</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Independent Contrasts and PGLS Regression Estimators Are Equivalent</atitle><jtitle>Systematic biology</jtitle><addtitle>Syst Biol</addtitle><date>2012-05-01</date><risdate>2012</risdate><volume>61</volume><issue>3</issue><spage>382</spage><epage>391</epage><pages>382-391</pages><issn>1063-5157</issn><eissn>1076-836X</eissn><abstract>We prove that the slope parameter of the ordinary least squares regression of phylogenetically independent contrasts (PICs) conducted through the origin is identical to the slope parameter of the method of generalized least squares (GLSs) regression under a Brownian motion model of evolution. This equivalence has several implications: 1. Understanding the structure of the linear model for GLS regression provides insight into when and why phylogeny is important in comparative studies. 2. The limitations of the PIC regression analysis are the same as the limitations of the GLS model. In particular, phylogenetic covariance applies only to the response variable in the regression and the explanatory variable should be regarded as fixed. Calculation of PICs for explanatory variables should be treated as a mathematical idiosyncrasy of the PIC regression algorithm. 3. Since the GLS estimator is the best linear unbiased estimator (BLUE), the slope parameter estimated using PICs is also BLUE. 4. If the slope is estimated using different branch lengths for the explanatory and response variables in the PIC algorithm, the estimator is no longer the BLUE, so this is not recommended. Finally, we discuss whether or not and how to accommodate phylogenetic covariance in regression analyses, particularly in relation to the problem of phylogenetic uncertainty. This discussion is from both frequentist and Bayesian perspectives.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>22215720</pmid><doi>10.1093/sysbio/syr118</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-5157 |
ispartof | Systematic biology, 2012-05, Vol.61 (3), p.382-391 |
issn | 1063-5157 1076-836X |
language | eng |
recordid | cdi_proquest_miscellaneous_1008825178 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current); Alma/SFX Local Collection |
subjects | Algorithms Bayes Theorem Brownian motion Classification - methods Comparative analysis Computer Simulation Covariance Covariance matrices Data Interpretation, Statistical Estimators Evolution Least squares Least-Squares Analysis linear models Linear regression Parameter estimation Phylogenetics Phylogeny Regression analysis Statistical variance Unbiased estimators uncertainty |
title | Independent Contrasts and PGLS Regression Estimators Are Equivalent |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A12%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Independent%20Contrasts%20and%20PGLS%20Regression%20Estimators%20Are%20Equivalent&rft.jtitle=Systematic%20biology&rft.au=Blomberg,%20Simon%20P&rft.date=2012-05-01&rft.volume=61&rft.issue=3&rft.spage=382&rft.epage=391&rft.pages=382-391&rft.issn=1063-5157&rft.eissn=1076-836X&rft_id=info:doi/10.1093/sysbio/syr118&rft_dat=%3Cjstor_proqu%3E41515209%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1009881901&rft_id=info:pmid/22215720&rft_jstor_id=41515209&rft_oup_id=10.1093/sysbio/syr118&rfr_iscdi=true |