Ordinary percolation with discontinuous transitions

Percolation on a one-dimensional lattice and fractals, such as the Sierpinski gasket, is typically considered to be trivial, because they percolate only at full bond density. By dressing up such lattices with small-world bonds, a novel percolation transition with explosive cluster growth can emerge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2012-04, Vol.3 (1), p.787-787, Article 787
Hauptverfasser: Boettcher, Stefan, Singh, Vijay, Ziff, Robert M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 787
container_issue 1
container_start_page 787
container_title Nature communications
container_volume 3
creator Boettcher, Stefan
Singh, Vijay
Ziff, Robert M.
description Percolation on a one-dimensional lattice and fractals, such as the Sierpinski gasket, is typically considered to be trivial, because they percolate only at full bond density. By dressing up such lattices with small-world bonds, a novel percolation transition with explosive cluster growth can emerge at a non-trivial critical point. There, the usual order parameter, describing the probability of any node to be part of the largest cluster, jumps instantly to a finite value. Here we provide a simple example in the form of a small-world network consisting of a one-dimensional lattice which, when combined with a hierarchy of long-range bonds, reveals many features of this transition in a mathematically rigorous manner. Percolation transitions indicate the threshold above which a network can operate. This work examines a general class of models known as hierarchical networks, and shows they can be made to percolate explosively, if they share features of so-called 'small-world' networks.
doi_str_mv 10.1038/ncomms1774
format Article
fullrecord <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_proquest_miscellaneous_1002795145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2642920351</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-53df41ce0b00b1715b1661508ffe80a63a8174d418d2503034c69a6f334856183</originalsourceid><addsrcrecordid>eNplkE1Lw0AQhhdRbKm9-AMk4EWU6E72M0cpfkGhFz2HTbLRLclu3U0Q_70bWrXoXGZgHt5550XoFPA1YCJvbOW6LoAQ9ABNM0whBZGRw715guYhrHEskoOk9BhNsowB5nk2RWTla2OV_0w22leuVb1xNvkw_VtSm1A52xs7uCEkvVc2mHEbTtBRo9qg57s-Qy_3d8-Lx3S5enha3C7TikjRp4zUDYVK4xLjEgSwEjgHhmXTaIkVJ0qCoDUFWWcME0xoxXPFG0KoZBwkmaGLre7Gu_dBh77ooiXdtsrqaKkAjDORM6Asoud_0LUbvI3uRioHKlgOkbrcUpV3IXjdFBtvuvh8hIoxzeI3zQif7SSHstP1D_qdXQSutkCIK_uq_f7Nf3Jf4LZ9Kw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1009147591</pqid></control><display><type>article</type><title>Ordinary percolation with discontinuous transitions</title><source>Springer Nature OA Free Journals</source><creator>Boettcher, Stefan ; Singh, Vijay ; Ziff, Robert M.</creator><creatorcontrib>Boettcher, Stefan ; Singh, Vijay ; Ziff, Robert M.</creatorcontrib><description>Percolation on a one-dimensional lattice and fractals, such as the Sierpinski gasket, is typically considered to be trivial, because they percolate only at full bond density. By dressing up such lattices with small-world bonds, a novel percolation transition with explosive cluster growth can emerge at a non-trivial critical point. There, the usual order parameter, describing the probability of any node to be part of the largest cluster, jumps instantly to a finite value. Here we provide a simple example in the form of a small-world network consisting of a one-dimensional lattice which, when combined with a hierarchy of long-range bonds, reveals many features of this transition in a mathematically rigorous manner. Percolation transitions indicate the threshold above which a network can operate. This work examines a general class of models known as hierarchical networks, and shows they can be made to percolate explosively, if they share features of so-called 'small-world' networks.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms1774</identifier><identifier>PMID: 22510692</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/119 ; 639/766/483/640 ; Humanities and Social Sciences ; multidisciplinary ; Science ; Science (multidisciplinary)</subject><ispartof>Nature communications, 2012-04, Vol.3 (1), p.787-787, Article 787</ispartof><rights>Springer Nature Limited 2012</rights><rights>Copyright Nature Publishing Group Apr 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-53df41ce0b00b1715b1661508ffe80a63a8174d418d2503034c69a6f334856183</citedby><cites>FETCH-LOGICAL-c387t-53df41ce0b00b1715b1661508ffe80a63a8174d418d2503034c69a6f334856183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/ncomms1774$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://doi.org/10.1038/ncomms1774$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41101,42170,51557</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.1038/ncomms1774$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22510692$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Boettcher, Stefan</creatorcontrib><creatorcontrib>Singh, Vijay</creatorcontrib><creatorcontrib>Ziff, Robert M.</creatorcontrib><title>Ordinary percolation with discontinuous transitions</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Percolation on a one-dimensional lattice and fractals, such as the Sierpinski gasket, is typically considered to be trivial, because they percolate only at full bond density. By dressing up such lattices with small-world bonds, a novel percolation transition with explosive cluster growth can emerge at a non-trivial critical point. There, the usual order parameter, describing the probability of any node to be part of the largest cluster, jumps instantly to a finite value. Here we provide a simple example in the form of a small-world network consisting of a one-dimensional lattice which, when combined with a hierarchy of long-range bonds, reveals many features of this transition in a mathematically rigorous manner. Percolation transitions indicate the threshold above which a network can operate. This work examines a general class of models known as hierarchical networks, and shows they can be made to percolate explosively, if they share features of so-called 'small-world' networks.</description><subject>639/766/119</subject><subject>639/766/483/640</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkE1Lw0AQhhdRbKm9-AMk4EWU6E72M0cpfkGhFz2HTbLRLclu3U0Q_70bWrXoXGZgHt5550XoFPA1YCJvbOW6LoAQ9ABNM0whBZGRw715guYhrHEskoOk9BhNsowB5nk2RWTla2OV_0w22leuVb1xNvkw_VtSm1A52xs7uCEkvVc2mHEbTtBRo9qg57s-Qy_3d8-Lx3S5enha3C7TikjRp4zUDYVK4xLjEgSwEjgHhmXTaIkVJ0qCoDUFWWcME0xoxXPFG0KoZBwkmaGLre7Gu_dBh77ooiXdtsrqaKkAjDORM6Asoud_0LUbvI3uRioHKlgOkbrcUpV3IXjdFBtvuvh8hIoxzeI3zQif7SSHstP1D_qdXQSutkCIK_uq_f7Nf3Jf4LZ9Kw</recordid><startdate>20120417</startdate><enddate>20120417</enddate><creator>Boettcher, Stefan</creator><creator>Singh, Vijay</creator><creator>Ziff, Robert M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20120417</creationdate><title>Ordinary percolation with discontinuous transitions</title><author>Boettcher, Stefan ; Singh, Vijay ; Ziff, Robert M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-53df41ce0b00b1715b1661508ffe80a63a8174d418d2503034c69a6f334856183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>639/766/119</topic><topic>639/766/483/640</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boettcher, Stefan</creatorcontrib><creatorcontrib>Singh, Vijay</creatorcontrib><creatorcontrib>Ziff, Robert M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Boettcher, Stefan</au><au>Singh, Vijay</au><au>Ziff, Robert M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ordinary percolation with discontinuous transitions</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2012-04-17</date><risdate>2012</risdate><volume>3</volume><issue>1</issue><spage>787</spage><epage>787</epage><pages>787-787</pages><artnum>787</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Percolation on a one-dimensional lattice and fractals, such as the Sierpinski gasket, is typically considered to be trivial, because they percolate only at full bond density. By dressing up such lattices with small-world bonds, a novel percolation transition with explosive cluster growth can emerge at a non-trivial critical point. There, the usual order parameter, describing the probability of any node to be part of the largest cluster, jumps instantly to a finite value. Here we provide a simple example in the form of a small-world network consisting of a one-dimensional lattice which, when combined with a hierarchy of long-range bonds, reveals many features of this transition in a mathematically rigorous manner. Percolation transitions indicate the threshold above which a network can operate. This work examines a general class of models known as hierarchical networks, and shows they can be made to percolate explosively, if they share features of so-called 'small-world' networks.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>22510692</pmid><doi>10.1038/ncomms1774</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2041-1723
ispartof Nature communications, 2012-04, Vol.3 (1), p.787-787, Article 787
issn 2041-1723
2041-1723
language eng
recordid cdi_proquest_miscellaneous_1002795145
source Springer Nature OA Free Journals
subjects 639/766/119
639/766/483/640
Humanities and Social Sciences
multidisciplinary
Science
Science (multidisciplinary)
title Ordinary percolation with discontinuous transitions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T23%3A59%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ordinary%20percolation%20with%20discontinuous%20transitions&rft.jtitle=Nature%20communications&rft.au=Boettcher,%20Stefan&rft.date=2012-04-17&rft.volume=3&rft.issue=1&rft.spage=787&rft.epage=787&rft.pages=787-787&rft.artnum=787&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms1774&rft_dat=%3Cproquest_C6C%3E2642920351%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1009147591&rft_id=info:pmid/22510692&rfr_iscdi=true