Light propagation in tissue during fluorescence spectroscopy with single-fiber probes

Fluorescence spectroscopy systems designed for clinical use commonly employ fiberoptic probes to deliver excitation light to a tissue site and collect remitted fluorescence. Although a wide variety of probes have been implemented, there is little known about the influence of probe design on light pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in quantum electronics 2001-11, Vol.7 (6), p.1004-1012
Hauptverfasser: Pfefer, T.J., Schomacker, K.T., Ediger, M.N., Nishioka, N.S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1012
container_issue 6
container_start_page 1004
container_title IEEE journal of selected topics in quantum electronics
container_volume 7
creator Pfefer, T.J.
Schomacker, K.T.
Ediger, M.N.
Nishioka, N.S.
description Fluorescence spectroscopy systems designed for clinical use commonly employ fiberoptic probes to deliver excitation light to a tissue site and collect remitted fluorescence. Although a wide variety of probes have been implemented, there is little known about the influence of probe design on light propagation and the origin of detected signals. In this study, we examined the effect of optical fiber diameter, probe-tissue spacing and numerical aperture on light propagation during fluorescence spectroscopy with a single-fiber probe. A Monte Carlo model was used to simulate light transport in tissue. Two distinct sets of excitation-emission wavelength pairs were studied (337/450 nm and 400/630 nm). Simulation results indicated that increasing fiber diameter or fiber-tissue spacing increased the mean excitation-emission photon pair pathlength and produced a transition from high selectivity for superficial fluorophores to a more homogeneous probing with depth. Increasing numerical aperture caused an increase in signal intensity, but axial emission profiles and pathlengths were not significantly affected for numerical aperture values less than 0.8. Tissue optics mechanisms and implications for probe design are discussed. This study indicates that single-fiber probe parameters can strongly affect fluorescence detection and should be considered in the design of optical diagnostic devices.
doi_str_mv 10.1109/2944.983306
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_998183723</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>983306</ieee_id><sourcerecordid>601642</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-b7ab15ca2e9c7a74ee4fc1a45f14d0fc8cb6275d53fdc88d99f16827b0652c183</originalsourceid><addsrcrecordid>eNqF0c9LwzAUB_AiCs7pyZun4kEP0pmkSZMcZfgLBl4ceAtp-rJldG1NWmT_vRkdHjzoKYF8eHnv-5LkEqMZxkjeE0npTIo8R8VRMsGMiYwySo7jHXGekQJ9nCZnIWwQQoIKNEmWC7da92nn206vdO_aJnVN2rsQBkirwbtmldp6aD0EA42BNHRget8G03a79Mv16zREU0NmXQl-X6iEcJ6cWF0HuDic02T59Pg-f8kWb8-v84dFZnKO-6zkusTMaALScM0pALUGa8osphWyRpiyIJxVLLeVEaKS0uJCEF6ighGDRT5Nbse68dvPAUKvti72Wde6gXYISmJaFFgWNMqbPyURecyDo_9hLLnPLsLrX3DTDr6J4yopRWyOkzyiuxGZGFnwYFXn3Vb7ncJI7Vem9itT48qivhq1A4AfeXj8Biv_kb4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>998183723</pqid></control><display><type>article</type><title>Light propagation in tissue during fluorescence spectroscopy with single-fiber probes</title><source>IEEE Electronic Library (IEL)</source><creator>Pfefer, T.J. ; Schomacker, K.T. ; Ediger, M.N. ; Nishioka, N.S.</creator><creatorcontrib>Pfefer, T.J. ; Schomacker, K.T. ; Ediger, M.N. ; Nishioka, N.S.</creatorcontrib><description>Fluorescence spectroscopy systems designed for clinical use commonly employ fiberoptic probes to deliver excitation light to a tissue site and collect remitted fluorescence. Although a wide variety of probes have been implemented, there is little known about the influence of probe design on light propagation and the origin of detected signals. In this study, we examined the effect of optical fiber diameter, probe-tissue spacing and numerical aperture on light propagation during fluorescence spectroscopy with a single-fiber probe. A Monte Carlo model was used to simulate light transport in tissue. Two distinct sets of excitation-emission wavelength pairs were studied (337/450 nm and 400/630 nm). Simulation results indicated that increasing fiber diameter or fiber-tissue spacing increased the mean excitation-emission photon pair pathlength and produced a transition from high selectivity for superficial fluorophores to a more homogeneous probing with depth. Increasing numerical aperture caused an increase in signal intensity, but axial emission profiles and pathlengths were not significantly affected for numerical aperture values less than 0.8. Tissue optics mechanisms and implications for probe design are discussed. This study indicates that single-fiber probe parameters can strongly affect fluorescence detection and should be considered in the design of optical diagnostic devices.</description><identifier>ISSN: 1077-260X</identifier><identifier>EISSN: 1558-4542</identifier><identifier>DOI: 10.1109/2944.983306</identifier><identifier>CODEN: IJSQEN</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Apertures ; Computer simulation ; Design engineering ; Excitation ; Fiber optics ; Fluorescence ; Laser applications ; Light ; Light propagation ; Mathematical models ; Monte Carlo methods ; Numerical aperture ; Optical design ; Optical devices ; Optical fibers ; Optical propagation ; Photons ; Probes ; Propagation ; Signal design ; Spectroscopic analysis ; Spectroscopy ; Spectrum analysis ; Stimulated emission ; Tissue</subject><ispartof>IEEE journal of selected topics in quantum electronics, 2001-11, Vol.7 (6), p.1004-1012</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-b7ab15ca2e9c7a74ee4fc1a45f14d0fc8cb6275d53fdc88d99f16827b0652c183</citedby><cites>FETCH-LOGICAL-c371t-b7ab15ca2e9c7a74ee4fc1a45f14d0fc8cb6275d53fdc88d99f16827b0652c183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/983306$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/983306$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pfefer, T.J.</creatorcontrib><creatorcontrib>Schomacker, K.T.</creatorcontrib><creatorcontrib>Ediger, M.N.</creatorcontrib><creatorcontrib>Nishioka, N.S.</creatorcontrib><title>Light propagation in tissue during fluorescence spectroscopy with single-fiber probes</title><title>IEEE journal of selected topics in quantum electronics</title><addtitle>JSTQE</addtitle><description>Fluorescence spectroscopy systems designed for clinical use commonly employ fiberoptic probes to deliver excitation light to a tissue site and collect remitted fluorescence. Although a wide variety of probes have been implemented, there is little known about the influence of probe design on light propagation and the origin of detected signals. In this study, we examined the effect of optical fiber diameter, probe-tissue spacing and numerical aperture on light propagation during fluorescence spectroscopy with a single-fiber probe. A Monte Carlo model was used to simulate light transport in tissue. Two distinct sets of excitation-emission wavelength pairs were studied (337/450 nm and 400/630 nm). Simulation results indicated that increasing fiber diameter or fiber-tissue spacing increased the mean excitation-emission photon pair pathlength and produced a transition from high selectivity for superficial fluorophores to a more homogeneous probing with depth. Increasing numerical aperture caused an increase in signal intensity, but axial emission profiles and pathlengths were not significantly affected for numerical aperture values less than 0.8. Tissue optics mechanisms and implications for probe design are discussed. This study indicates that single-fiber probe parameters can strongly affect fluorescence detection and should be considered in the design of optical diagnostic devices.</description><subject>Apertures</subject><subject>Computer simulation</subject><subject>Design engineering</subject><subject>Excitation</subject><subject>Fiber optics</subject><subject>Fluorescence</subject><subject>Laser applications</subject><subject>Light</subject><subject>Light propagation</subject><subject>Mathematical models</subject><subject>Monte Carlo methods</subject><subject>Numerical aperture</subject><subject>Optical design</subject><subject>Optical devices</subject><subject>Optical fibers</subject><subject>Optical propagation</subject><subject>Photons</subject><subject>Probes</subject><subject>Propagation</subject><subject>Signal design</subject><subject>Spectroscopic analysis</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Stimulated emission</subject><subject>Tissue</subject><issn>1077-260X</issn><issn>1558-4542</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0c9LwzAUB_AiCs7pyZun4kEP0pmkSZMcZfgLBl4ceAtp-rJldG1NWmT_vRkdHjzoKYF8eHnv-5LkEqMZxkjeE0npTIo8R8VRMsGMiYwySo7jHXGekQJ9nCZnIWwQQoIKNEmWC7da92nn206vdO_aJnVN2rsQBkirwbtmldp6aD0EA42BNHRget8G03a79Mv16zREU0NmXQl-X6iEcJ6cWF0HuDic02T59Pg-f8kWb8-v84dFZnKO-6zkusTMaALScM0pALUGa8osphWyRpiyIJxVLLeVEaKS0uJCEF6ighGDRT5Nbse68dvPAUKvti72Wde6gXYISmJaFFgWNMqbPyURecyDo_9hLLnPLsLrX3DTDr6J4yopRWyOkzyiuxGZGFnwYFXn3Vb7ncJI7Vem9itT48qivhq1A4AfeXj8Biv_kb4</recordid><startdate>20011101</startdate><enddate>20011101</enddate><creator>Pfefer, T.J.</creator><creator>Schomacker, K.T.</creator><creator>Ediger, M.N.</creator><creator>Nishioka, N.S.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20011101</creationdate><title>Light propagation in tissue during fluorescence spectroscopy with single-fiber probes</title><author>Pfefer, T.J. ; Schomacker, K.T. ; Ediger, M.N. ; Nishioka, N.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-b7ab15ca2e9c7a74ee4fc1a45f14d0fc8cb6275d53fdc88d99f16827b0652c183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Apertures</topic><topic>Computer simulation</topic><topic>Design engineering</topic><topic>Excitation</topic><topic>Fiber optics</topic><topic>Fluorescence</topic><topic>Laser applications</topic><topic>Light</topic><topic>Light propagation</topic><topic>Mathematical models</topic><topic>Monte Carlo methods</topic><topic>Numerical aperture</topic><topic>Optical design</topic><topic>Optical devices</topic><topic>Optical fibers</topic><topic>Optical propagation</topic><topic>Photons</topic><topic>Probes</topic><topic>Propagation</topic><topic>Signal design</topic><topic>Spectroscopic analysis</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Stimulated emission</topic><topic>Tissue</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pfefer, T.J.</creatorcontrib><creatorcontrib>Schomacker, K.T.</creatorcontrib><creatorcontrib>Ediger, M.N.</creatorcontrib><creatorcontrib>Nishioka, N.S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE journal of selected topics in quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pfefer, T.J.</au><au>Schomacker, K.T.</au><au>Ediger, M.N.</au><au>Nishioka, N.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Light propagation in tissue during fluorescence spectroscopy with single-fiber probes</atitle><jtitle>IEEE journal of selected topics in quantum electronics</jtitle><stitle>JSTQE</stitle><date>2001-11-01</date><risdate>2001</risdate><volume>7</volume><issue>6</issue><spage>1004</spage><epage>1012</epage><pages>1004-1012</pages><issn>1077-260X</issn><eissn>1558-4542</eissn><coden>IJSQEN</coden><abstract>Fluorescence spectroscopy systems designed for clinical use commonly employ fiberoptic probes to deliver excitation light to a tissue site and collect remitted fluorescence. Although a wide variety of probes have been implemented, there is little known about the influence of probe design on light propagation and the origin of detected signals. In this study, we examined the effect of optical fiber diameter, probe-tissue spacing and numerical aperture on light propagation during fluorescence spectroscopy with a single-fiber probe. A Monte Carlo model was used to simulate light transport in tissue. Two distinct sets of excitation-emission wavelength pairs were studied (337/450 nm and 400/630 nm). Simulation results indicated that increasing fiber diameter or fiber-tissue spacing increased the mean excitation-emission photon pair pathlength and produced a transition from high selectivity for superficial fluorophores to a more homogeneous probing with depth. Increasing numerical aperture caused an increase in signal intensity, but axial emission profiles and pathlengths were not significantly affected for numerical aperture values less than 0.8. Tissue optics mechanisms and implications for probe design are discussed. This study indicates that single-fiber probe parameters can strongly affect fluorescence detection and should be considered in the design of optical diagnostic devices.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/2944.983306</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1077-260X
ispartof IEEE journal of selected topics in quantum electronics, 2001-11, Vol.7 (6), p.1004-1012
issn 1077-260X
1558-4542
language eng
recordid cdi_proquest_journals_998183723
source IEEE Electronic Library (IEL)
subjects Apertures
Computer simulation
Design engineering
Excitation
Fiber optics
Fluorescence
Laser applications
Light
Light propagation
Mathematical models
Monte Carlo methods
Numerical aperture
Optical design
Optical devices
Optical fibers
Optical propagation
Photons
Probes
Propagation
Signal design
Spectroscopic analysis
Spectroscopy
Spectrum analysis
Stimulated emission
Tissue
title Light propagation in tissue during fluorescence spectroscopy with single-fiber probes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T22%3A45%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Light%20propagation%20in%20tissue%20during%20fluorescence%20spectroscopy%20with%20single-fiber%20probes&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20quantum%20electronics&rft.au=Pfefer,%20T.J.&rft.date=2001-11-01&rft.volume=7&rft.issue=6&rft.spage=1004&rft.epage=1012&rft.pages=1004-1012&rft.issn=1077-260X&rft.eissn=1558-4542&rft.coden=IJSQEN&rft_id=info:doi/10.1109/2944.983306&rft_dat=%3Cproquest_RIE%3E601642%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=998183723&rft_id=info:pmid/&rft_ieee_id=983306&rfr_iscdi=true