Fault current tests of a 5-m HTS cable
The first industrial demonstration of a three-phase, HTS power transmission cable at the Southwire manufacturing complex is in progress. One crucial issue during operation of the 30-m HTS cables is whether they can survive the fault current (which can be over an order of magnitude higher than the op...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on applied superconductivity 2001-03, Vol.11 (1), p.1785-1788 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The first industrial demonstration of a three-phase, HTS power transmission cable at the Southwire manufacturing complex is in progress. One crucial issue during operation of the 30-m HTS cables is whether they can survive the fault current (which can be over an order of magnitude higher than the operating current) in the event of a short circuit fault and how HTS cables and the cryogenic system would respond. Simulated fault-current tests were performed at ORNL on a 5-m cable. This single-phase cable was constructed in the same way as the 30-m cables and is also rated for 1250 A at 7.2 kV AC line-to-ground voltage. Tests were performed with fault-current pulses of up to 15 kA (for 0.5 s) with pulse lengths of up to 5 s (at 6.8 kA). Although a large voltage drop was produced across the HTS cable during the fault-current pulse, no significant changes in the coolant temperature, pressure, or joint resistance were observed. The cable survived all 15 simulated fault-current shots without any degradation in its V-I characteristics. |
---|---|
ISSN: | 1051-8223 1558-2515 |
DOI: | 10.1109/77.920132 |