A study on the formation and trend of the Brewer-Dobson circulation
The Brewer‐Dobson circulation (BDC) is approximately expressed by the residual circulation (RC) and considered to be driven by the body force induced by the breaking and/or dissipation of atmospheric waves. The contribution of different types of waves to the RC in the Center for Climate System Resea...
Gespeichert in:
Veröffentlicht in: | Journal of Geophysical Research 2011-05, Vol.116 (D10), p.1F-n/a, Article D10117 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | D10 |
container_start_page | 1F |
container_title | Journal of Geophysical Research |
container_volume | 116 |
creator | Okamoto, K. Sato, K. Akiyoshi, H. |
description | The Brewer‐Dobson circulation (BDC) is approximately expressed by the residual circulation (RC) and considered to be driven by the body force induced by the breaking and/or dissipation of atmospheric waves. The contribution of different types of waves to the RC in the Center for Climate System Research/National Institute for Environmental Studies (CCSR/NIES) Chemistry Climate Model (CCM) is diagnosed using the “downward control principle (DC).” Gravity wave drag (GWD) including orographic gravity wave drag (OGWD) has a great influence on the RC in the low and middle latitudes of the lower stratosphere. In particular, the summer hemispheric low‐latitude part of winter circulation is mainly formed by the GWD. These results are consistent with the estimates of the GWD contribution using reanalysis data by subtracting the resolved wave contribution from the RC with DC principle. In addition, it is seen that the net upward mass flux on the 70 hPa surface is strengthened during the 21st century because of the upward shift of the OGWD, which is consistent with previous studies. These conclusions indicate that gravity waves play an important role in maintaining the BDC.
Key Points
The importance of GWD on the formation of the BDC
The importance of GWD on the trend of the BDC
The impact of the GHG increase on the GWD |
doi_str_mv | 10.1029/2010JD014953 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_993140620</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2631000741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4385-95402e699c100fa81aead1fd3f9f38af1b72226988d1ff1ceef13e5765ea936c3</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhiMEEtPYjR9QwZVCnDRpchwdbJQJJMSHxCXK2kR0bCskrcb-PWFFiAv4YMt-n9eWjNAh4FPARJ4RDDgfYUgkozuoR4DxmBBMdlEvDEWMCUn30cD7OQ6RMJ5g6KFsGPmmLTdRvYqaFxPZ2i11U4VOr8qocSbk2m6lc2fWxsWjeuaDXFSuaBdb9ADtWb3wZvBd--jh8uI-m8TT2_FVNpzGRUIFiyVLMDFcygIwtlqANroEW1IrLRXawiwlhHApRJhaKIyxQA1LOTNaUl7QPjrq9r65-r01vlHzunWrcFJJSSHBnOAAHf8FASeMihSoDNRJRxWu9t4Zq95ctdRuowCrr3eq3-8MOO3wdbUwm39ZlY_vRsBFONVHceeqfGM-flzavSqe0pSpp5uxerzOnycZzVVCPwFstYLN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1625387139</pqid></control><display><type>article</type><title>A study on the formation and trend of the Brewer-Dobson circulation</title><source>Access via Wiley Online Library</source><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><creator>Okamoto, K. ; Sato, K. ; Akiyoshi, H.</creator><creatorcontrib>Okamoto, K. ; Sato, K. ; Akiyoshi, H.</creatorcontrib><description>The Brewer‐Dobson circulation (BDC) is approximately expressed by the residual circulation (RC) and considered to be driven by the body force induced by the breaking and/or dissipation of atmospheric waves. The contribution of different types of waves to the RC in the Center for Climate System Research/National Institute for Environmental Studies (CCSR/NIES) Chemistry Climate Model (CCM) is diagnosed using the “downward control principle (DC).” Gravity wave drag (GWD) including orographic gravity wave drag (OGWD) has a great influence on the RC in the low and middle latitudes of the lower stratosphere. In particular, the summer hemispheric low‐latitude part of winter circulation is mainly formed by the GWD. These results are consistent with the estimates of the GWD contribution using reanalysis data by subtracting the resolved wave contribution from the RC with DC principle. In addition, it is seen that the net upward mass flux on the 70 hPa surface is strengthened during the 21st century because of the upward shift of the OGWD, which is consistent with previous studies. These conclusions indicate that gravity waves play an important role in maintaining the BDC.
Key Points
The importance of GWD on the formation of the BDC
The importance of GWD on the trend of the BDC
The impact of the GHG increase on the GWD</description><identifier>ISSN: 0148-0227</identifier><identifier>ISSN: 2169-897X</identifier><identifier>EISSN: 2156-2202</identifier><identifier>EISSN: 2169-8996</identifier><identifier>DOI: 10.1029/2010JD014953</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Atmospheric circulation ; Atmospheric sciences ; Brewer-Dobson circulation ; CCM ; Climate models ; Climate science ; Climate system ; Environmental studies ; General circulation models ; Geophysics ; gravity wave drag ; Gravity waves ; Greenhouse gases ; Latitude ; residual circulation ; Stratosphere</subject><ispartof>Journal of Geophysical Research, 2011-05, Vol.116 (D10), p.1F-n/a, Article D10117</ispartof><rights>Copyright 2011 by the American Geophysical Union.</rights><rights>Copyright Blackwell Publishing Ltd. 2011</rights><rights>Copyright 2011 by American Geophysical Union</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4385-95402e699c100fa81aead1fd3f9f38af1b72226988d1ff1ceef13e5765ea936c3</citedby><cites>FETCH-LOGICAL-c4385-95402e699c100fa81aead1fd3f9f38af1b72226988d1ff1ceef13e5765ea936c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2010JD014953$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2010JD014953$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,11514,27924,27925,45574,45575,46409,46468,46833,46892</link.rule.ids></links><search><creatorcontrib>Okamoto, K.</creatorcontrib><creatorcontrib>Sato, K.</creatorcontrib><creatorcontrib>Akiyoshi, H.</creatorcontrib><title>A study on the formation and trend of the Brewer-Dobson circulation</title><title>Journal of Geophysical Research</title><addtitle>J. Geophys. Res</addtitle><description>The Brewer‐Dobson circulation (BDC) is approximately expressed by the residual circulation (RC) and considered to be driven by the body force induced by the breaking and/or dissipation of atmospheric waves. The contribution of different types of waves to the RC in the Center for Climate System Research/National Institute for Environmental Studies (CCSR/NIES) Chemistry Climate Model (CCM) is diagnosed using the “downward control principle (DC).” Gravity wave drag (GWD) including orographic gravity wave drag (OGWD) has a great influence on the RC in the low and middle latitudes of the lower stratosphere. In particular, the summer hemispheric low‐latitude part of winter circulation is mainly formed by the GWD. These results are consistent with the estimates of the GWD contribution using reanalysis data by subtracting the resolved wave contribution from the RC with DC principle. In addition, it is seen that the net upward mass flux on the 70 hPa surface is strengthened during the 21st century because of the upward shift of the OGWD, which is consistent with previous studies. These conclusions indicate that gravity waves play an important role in maintaining the BDC.
Key Points
The importance of GWD on the formation of the BDC
The importance of GWD on the trend of the BDC
The impact of the GHG increase on the GWD</description><subject>Atmospheric circulation</subject><subject>Atmospheric sciences</subject><subject>Brewer-Dobson circulation</subject><subject>CCM</subject><subject>Climate models</subject><subject>Climate science</subject><subject>Climate system</subject><subject>Environmental studies</subject><subject>General circulation models</subject><subject>Geophysics</subject><subject>gravity wave drag</subject><subject>Gravity waves</subject><subject>Greenhouse gases</subject><subject>Latitude</subject><subject>residual circulation</subject><subject>Stratosphere</subject><issn>0148-0227</issn><issn>2169-897X</issn><issn>2156-2202</issn><issn>2169-8996</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1PwzAMhiMEEtPYjR9QwZVCnDRpchwdbJQJJMSHxCXK2kR0bCskrcb-PWFFiAv4YMt-n9eWjNAh4FPARJ4RDDgfYUgkozuoR4DxmBBMdlEvDEWMCUn30cD7OQ6RMJ5g6KFsGPmmLTdRvYqaFxPZ2i11U4VOr8qocSbk2m6lc2fWxsWjeuaDXFSuaBdb9ADtWb3wZvBd--jh8uI-m8TT2_FVNpzGRUIFiyVLMDFcygIwtlqANroEW1IrLRXawiwlhHApRJhaKIyxQA1LOTNaUl7QPjrq9r65-r01vlHzunWrcFJJSSHBnOAAHf8FASeMihSoDNRJRxWu9t4Zq95ctdRuowCrr3eq3-8MOO3wdbUwm39ZlY_vRsBFONVHceeqfGM-flzavSqe0pSpp5uxerzOnycZzVVCPwFstYLN</recordid><startdate>20110527</startdate><enddate>20110527</enddate><creator>Okamoto, K.</creator><creator>Sato, K.</creator><creator>Akiyoshi, H.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20110527</creationdate><title>A study on the formation and trend of the Brewer-Dobson circulation</title><author>Okamoto, K. ; Sato, K. ; Akiyoshi, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4385-95402e699c100fa81aead1fd3f9f38af1b72226988d1ff1ceef13e5765ea936c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Atmospheric circulation</topic><topic>Atmospheric sciences</topic><topic>Brewer-Dobson circulation</topic><topic>CCM</topic><topic>Climate models</topic><topic>Climate science</topic><topic>Climate system</topic><topic>Environmental studies</topic><topic>General circulation models</topic><topic>Geophysics</topic><topic>gravity wave drag</topic><topic>Gravity waves</topic><topic>Greenhouse gases</topic><topic>Latitude</topic><topic>residual circulation</topic><topic>Stratosphere</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Okamoto, K.</creatorcontrib><creatorcontrib>Sato, K.</creatorcontrib><creatorcontrib>Akiyoshi, H.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of Geophysical Research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Okamoto, K.</au><au>Sato, K.</au><au>Akiyoshi, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A study on the formation and trend of the Brewer-Dobson circulation</atitle><jtitle>Journal of Geophysical Research</jtitle><addtitle>J. Geophys. Res</addtitle><date>2011-05-27</date><risdate>2011</risdate><volume>116</volume><issue>D10</issue><spage>1F</spage><epage>n/a</epage><pages>1F-n/a</pages><artnum>D10117</artnum><issn>0148-0227</issn><issn>2169-897X</issn><eissn>2156-2202</eissn><eissn>2169-8996</eissn><abstract>The Brewer‐Dobson circulation (BDC) is approximately expressed by the residual circulation (RC) and considered to be driven by the body force induced by the breaking and/or dissipation of atmospheric waves. The contribution of different types of waves to the RC in the Center for Climate System Research/National Institute for Environmental Studies (CCSR/NIES) Chemistry Climate Model (CCM) is diagnosed using the “downward control principle (DC).” Gravity wave drag (GWD) including orographic gravity wave drag (OGWD) has a great influence on the RC in the low and middle latitudes of the lower stratosphere. In particular, the summer hemispheric low‐latitude part of winter circulation is mainly formed by the GWD. These results are consistent with the estimates of the GWD contribution using reanalysis data by subtracting the resolved wave contribution from the RC with DC principle. In addition, it is seen that the net upward mass flux on the 70 hPa surface is strengthened during the 21st century because of the upward shift of the OGWD, which is consistent with previous studies. These conclusions indicate that gravity waves play an important role in maintaining the BDC.
Key Points
The importance of GWD on the formation of the BDC
The importance of GWD on the trend of the BDC
The impact of the GHG increase on the GWD</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2010JD014953</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0148-0227 |
ispartof | Journal of Geophysical Research, 2011-05, Vol.116 (D10), p.1F-n/a, Article D10117 |
issn | 0148-0227 2169-897X 2156-2202 2169-8996 |
language | eng |
recordid | cdi_proquest_journals_993140620 |
source | Access via Wiley Online Library; Wiley-Blackwell AGU Digital Library; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection |
subjects | Atmospheric circulation Atmospheric sciences Brewer-Dobson circulation CCM Climate models Climate science Climate system Environmental studies General circulation models Geophysics gravity wave drag Gravity waves Greenhouse gases Latitude residual circulation Stratosphere |
title | A study on the formation and trend of the Brewer-Dobson circulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T20%3A01%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20study%20on%20the%20formation%20and%20trend%20of%20the%20Brewer-Dobson%20circulation&rft.jtitle=Journal%20of%20Geophysical%20Research&rft.au=Okamoto,%20K.&rft.date=2011-05-27&rft.volume=116&rft.issue=D10&rft.spage=1F&rft.epage=n/a&rft.pages=1F-n/a&rft.artnum=D10117&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2010JD014953&rft_dat=%3Cproquest_cross%3E2631000741%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1625387139&rft_id=info:pmid/&rfr_iscdi=true |