Interdefect charge exchange in silicon particle detectors at cryogenic temperatures

Silicon particle detectors in the next generation of experiments at the CERN Large Hadron Collider will be exposed to a very challenging radiation environment. The principal obstacle to long-term operation arises from changes in detector doping concentration (N/sub eff/), which lead to an increase i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on nuclear science 2002-08, Vol.49 (4), p.1750-1755
Hauptverfasser: MacEvoy, B., Santocchia, A., Hall, G., Moscatelli, F., Passeri, D., Bilei, G.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1755
container_issue 4
container_start_page 1750
container_title IEEE transactions on nuclear science
container_volume 49
creator MacEvoy, B.
Santocchia, A.
Hall, G.
Moscatelli, F.
Passeri, D.
Bilei, G.M.
description Silicon particle detectors in the next generation of experiments at the CERN Large Hadron Collider will be exposed to a very challenging radiation environment. The principal obstacle to long-term operation arises from changes in detector doping concentration (N/sub eff/), which lead to an increase in the bias required to deplete the detector and hence achieve efficient charge collection. We have previously presented a model of interdefect charge exchange between closely spaced centers in the dense terminal clusters formed by hadron irradiation. This manifestly non-Shockley-Read-Hall (SRH) mechanism leads to a marked increase in carrier generation rate and negative space charge over the SRH prediction. There is currently much interest in the subject of cryogenic detector operation as a means of improving radiation hardness. Our motivation, however, is primarily to investigate our model further by testing its predictions over a range of temperatures. We present measurements of spectra from /sup 241/Am alpha particles and 1064-nm laser pulses as a function of bias between 120 and 290 K. Values of N/sub eff/ and substrate type are extracted from the spectra and compared with the model. The model is implemented in both a commercial finite-element device simulator (ISE-TCAD) and a purpose-built simulation of interdefect charge exchange. Deviations from the model are explored and comments made as to possible future directions for investigation of this difficult problem.
doi_str_mv 10.1109/TNS.2002.801668
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_993006196</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1043489</ieee_id><sourcerecordid>2630138051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-dec94a49b0a3256cb1a8b2f13b6e3ba188a98fec5ad9453f1887f9ece542f6b33</originalsourceid><addsrcrecordid>eNp9kb1PwzAQxS0EEqUwM7BEDDCltWM7sUdU8VGpgqFlthznUlylSbAdif73uAoDYmC6d6ffO93pIXRN8IwQLOeb1_UswzibCUzyXJygCeFcpIQX4hRNMCYilUzKc3Th_S62jGM-QetlG8BVUIMJifnQbgsJfEXRRmHbxNvGmq5Neu2CNQ0kFYSIds4nOhrcodtCa00SYN-D02Fw4C_RWa0bD1c_dYrenx43i5d09fa8XDysUkMFC2kFRjLNZIk1zXhuSqJFmdWEljnQUhMhtBTxLq4ryTit46CoJRjgLKvzktIpuh_39q77HMAHtbfeQNPoFrrBK4kLyQWjWSTv_iUzwYqc4SN4-wfcdYNr4xdKSopxTmQeofkIGdd576BWvbN77Q6KYHXMQsUs1DELNWYRHTejwwLAL5pRJiT9BkUthhA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>993006196</pqid></control><display><type>article</type><title>Interdefect charge exchange in silicon particle detectors at cryogenic temperatures</title><source>IEEE Electronic Library (IEL)</source><creator>MacEvoy, B. ; Santocchia, A. ; Hall, G. ; Moscatelli, F. ; Passeri, D. ; Bilei, G.M.</creator><creatorcontrib>MacEvoy, B. ; Santocchia, A. ; Hall, G. ; Moscatelli, F. ; Passeri, D. ; Bilei, G.M.</creatorcontrib><description>Silicon particle detectors in the next generation of experiments at the CERN Large Hadron Collider will be exposed to a very challenging radiation environment. The principal obstacle to long-term operation arises from changes in detector doping concentration (N/sub eff/), which lead to an increase in the bias required to deplete the detector and hence achieve efficient charge collection. We have previously presented a model of interdefect charge exchange between closely spaced centers in the dense terminal clusters formed by hadron irradiation. This manifestly non-Shockley-Read-Hall (SRH) mechanism leads to a marked increase in carrier generation rate and negative space charge over the SRH prediction. There is currently much interest in the subject of cryogenic detector operation as a means of improving radiation hardness. Our motivation, however, is primarily to investigate our model further by testing its predictions over a range of temperatures. We present measurements of spectra from /sup 241/Am alpha particles and 1064-nm laser pulses as a function of bias between 120 and 290 K. Values of N/sub eff/ and substrate type are extracted from the spectra and compared with the model. The model is implemented in both a commercial finite-element device simulator (ISE-TCAD) and a purpose-built simulation of interdefect charge exchange. Deviations from the model are explored and comments made as to possible future directions for investigation of this difficult problem.</description><identifier>ISSN: 0018-9499</identifier><identifier>EISSN: 1558-1578</identifier><identifier>DOI: 10.1109/TNS.2002.801668</identifier><identifier>CODEN: IETNAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Bias ; Charge exchange ; Computer simulation ; Cryogenics ; Detectors ; Doping ; Hadrons ; Large Hadron Collider ; Mathematical models ; Predictive models ; Pulse measurements ; Radiation detectors ; Semiconductor process modeling ; Silicon ; Space charge ; Spectra ; Temperature</subject><ispartof>IEEE transactions on nuclear science, 2002-08, Vol.49 (4), p.1750-1755</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-dec94a49b0a3256cb1a8b2f13b6e3ba188a98fec5ad9453f1887f9ece542f6b33</citedby><cites>FETCH-LOGICAL-c384t-dec94a49b0a3256cb1a8b2f13b6e3ba188a98fec5ad9453f1887f9ece542f6b33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1043489$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27911,27912,54745</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1043489$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>MacEvoy, B.</creatorcontrib><creatorcontrib>Santocchia, A.</creatorcontrib><creatorcontrib>Hall, G.</creatorcontrib><creatorcontrib>Moscatelli, F.</creatorcontrib><creatorcontrib>Passeri, D.</creatorcontrib><creatorcontrib>Bilei, G.M.</creatorcontrib><title>Interdefect charge exchange in silicon particle detectors at cryogenic temperatures</title><title>IEEE transactions on nuclear science</title><addtitle>TNS</addtitle><description>Silicon particle detectors in the next generation of experiments at the CERN Large Hadron Collider will be exposed to a very challenging radiation environment. The principal obstacle to long-term operation arises from changes in detector doping concentration (N/sub eff/), which lead to an increase in the bias required to deplete the detector and hence achieve efficient charge collection. We have previously presented a model of interdefect charge exchange between closely spaced centers in the dense terminal clusters formed by hadron irradiation. This manifestly non-Shockley-Read-Hall (SRH) mechanism leads to a marked increase in carrier generation rate and negative space charge over the SRH prediction. There is currently much interest in the subject of cryogenic detector operation as a means of improving radiation hardness. Our motivation, however, is primarily to investigate our model further by testing its predictions over a range of temperatures. We present measurements of spectra from /sup 241/Am alpha particles and 1064-nm laser pulses as a function of bias between 120 and 290 K. Values of N/sub eff/ and substrate type are extracted from the spectra and compared with the model. The model is implemented in both a commercial finite-element device simulator (ISE-TCAD) and a purpose-built simulation of interdefect charge exchange. Deviations from the model are explored and comments made as to possible future directions for investigation of this difficult problem.</description><subject>Bias</subject><subject>Charge exchange</subject><subject>Computer simulation</subject><subject>Cryogenics</subject><subject>Detectors</subject><subject>Doping</subject><subject>Hadrons</subject><subject>Large Hadron Collider</subject><subject>Mathematical models</subject><subject>Predictive models</subject><subject>Pulse measurements</subject><subject>Radiation detectors</subject><subject>Semiconductor process modeling</subject><subject>Silicon</subject><subject>Space charge</subject><subject>Spectra</subject><subject>Temperature</subject><issn>0018-9499</issn><issn>1558-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kb1PwzAQxS0EEqUwM7BEDDCltWM7sUdU8VGpgqFlthznUlylSbAdif73uAoDYmC6d6ffO93pIXRN8IwQLOeb1_UswzibCUzyXJygCeFcpIQX4hRNMCYilUzKc3Th_S62jGM-QetlG8BVUIMJifnQbgsJfEXRRmHbxNvGmq5Neu2CNQ0kFYSIds4nOhrcodtCa00SYN-D02Fw4C_RWa0bD1c_dYrenx43i5d09fa8XDysUkMFC2kFRjLNZIk1zXhuSqJFmdWEljnQUhMhtBTxLq4ryTit46CoJRjgLKvzktIpuh_39q77HMAHtbfeQNPoFrrBK4kLyQWjWSTv_iUzwYqc4SN4-wfcdYNr4xdKSopxTmQeofkIGdd576BWvbN77Q6KYHXMQsUs1DELNWYRHTejwwLAL5pRJiT9BkUthhA</recordid><startdate>20020801</startdate><enddate>20020801</enddate><creator>MacEvoy, B.</creator><creator>Santocchia, A.</creator><creator>Hall, G.</creator><creator>Moscatelli, F.</creator><creator>Passeri, D.</creator><creator>Bilei, G.M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope></search><sort><creationdate>20020801</creationdate><title>Interdefect charge exchange in silicon particle detectors at cryogenic temperatures</title><author>MacEvoy, B. ; Santocchia, A. ; Hall, G. ; Moscatelli, F. ; Passeri, D. ; Bilei, G.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-dec94a49b0a3256cb1a8b2f13b6e3ba188a98fec5ad9453f1887f9ece542f6b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Bias</topic><topic>Charge exchange</topic><topic>Computer simulation</topic><topic>Cryogenics</topic><topic>Detectors</topic><topic>Doping</topic><topic>Hadrons</topic><topic>Large Hadron Collider</topic><topic>Mathematical models</topic><topic>Predictive models</topic><topic>Pulse measurements</topic><topic>Radiation detectors</topic><topic>Semiconductor process modeling</topic><topic>Silicon</topic><topic>Space charge</topic><topic>Spectra</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MacEvoy, B.</creatorcontrib><creatorcontrib>Santocchia, A.</creatorcontrib><creatorcontrib>Hall, G.</creatorcontrib><creatorcontrib>Moscatelli, F.</creatorcontrib><creatorcontrib>Passeri, D.</creatorcontrib><creatorcontrib>Bilei, G.M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>IEEE transactions on nuclear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>MacEvoy, B.</au><au>Santocchia, A.</au><au>Hall, G.</au><au>Moscatelli, F.</au><au>Passeri, D.</au><au>Bilei, G.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interdefect charge exchange in silicon particle detectors at cryogenic temperatures</atitle><jtitle>IEEE transactions on nuclear science</jtitle><stitle>TNS</stitle><date>2002-08-01</date><risdate>2002</risdate><volume>49</volume><issue>4</issue><spage>1750</spage><epage>1755</epage><pages>1750-1755</pages><issn>0018-9499</issn><eissn>1558-1578</eissn><coden>IETNAE</coden><abstract>Silicon particle detectors in the next generation of experiments at the CERN Large Hadron Collider will be exposed to a very challenging radiation environment. The principal obstacle to long-term operation arises from changes in detector doping concentration (N/sub eff/), which lead to an increase in the bias required to deplete the detector and hence achieve efficient charge collection. We have previously presented a model of interdefect charge exchange between closely spaced centers in the dense terminal clusters formed by hadron irradiation. This manifestly non-Shockley-Read-Hall (SRH) mechanism leads to a marked increase in carrier generation rate and negative space charge over the SRH prediction. There is currently much interest in the subject of cryogenic detector operation as a means of improving radiation hardness. Our motivation, however, is primarily to investigate our model further by testing its predictions over a range of temperatures. We present measurements of spectra from /sup 241/Am alpha particles and 1064-nm laser pulses as a function of bias between 120 and 290 K. Values of N/sub eff/ and substrate type are extracted from the spectra and compared with the model. The model is implemented in both a commercial finite-element device simulator (ISE-TCAD) and a purpose-built simulation of interdefect charge exchange. Deviations from the model are explored and comments made as to possible future directions for investigation of this difficult problem.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNS.2002.801668</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9499
ispartof IEEE transactions on nuclear science, 2002-08, Vol.49 (4), p.1750-1755
issn 0018-9499
1558-1578
language eng
recordid cdi_proquest_journals_993006196
source IEEE Electronic Library (IEL)
subjects Bias
Charge exchange
Computer simulation
Cryogenics
Detectors
Doping
Hadrons
Large Hadron Collider
Mathematical models
Predictive models
Pulse measurements
Radiation detectors
Semiconductor process modeling
Silicon
Space charge
Spectra
Temperature
title Interdefect charge exchange in silicon particle detectors at cryogenic temperatures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T05%3A31%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interdefect%20charge%20exchange%20in%20silicon%20particle%20detectors%20at%20cryogenic%20temperatures&rft.jtitle=IEEE%20transactions%20on%20nuclear%20science&rft.au=MacEvoy,%20B.&rft.date=2002-08-01&rft.volume=49&rft.issue=4&rft.spage=1750&rft.epage=1755&rft.pages=1750-1755&rft.issn=0018-9499&rft.eissn=1558-1578&rft.coden=IETNAE&rft_id=info:doi/10.1109/TNS.2002.801668&rft_dat=%3Cproquest_RIE%3E2630138051%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=993006196&rft_id=info:pmid/&rft_ieee_id=1043489&rfr_iscdi=true