Manufacturing experience for the LHC inner triplet quadrupole cables

The design for the U.S. LHC Inner Triplet Quadrupole magnet requires a 37 strand (inner layer) and a 46 strand (outer layer) cable. This represents the largest number of strands attempted to date for a production quantity of Rutherford-type cable. The cable parameters were optimized during the produ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on applied superconductivity 2002-03, Vol.12 (1), p.1203-1206
Hauptverfasser: Scanlan, R.M., Higley, H.C., Bossert, R., Kerby, J., Ghosh, A.K., Boivin, M., Roy, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1206
container_issue 1
container_start_page 1203
container_title IEEE transactions on applied superconductivity
container_volume 12
creator Scanlan, R.M.
Higley, H.C.
Bossert, R.
Kerby, J.
Ghosh, A.K.
Boivin, M.
Roy, T.
description The design for the U.S. LHC Inner Triplet Quadrupole magnet requires a 37 strand (inner layer) and a 46 strand (outer layer) cable. This represents the largest number of strands attempted to date for a production quantity of Rutherford-type cable. The cable parameters were optimized during the production of a series of short prototype magnets produced at FNAL. These optimization studies focused on critical current degradation, dimensional control, coil winding, and interstrand resistance. After the R&D phase was complete, the technology was transferred to NEEW and a new cabling machine was installed to produce these cables. At present, about 60 unit lengths, out of 90 required for the entire production series of magnets, have been completed for each type of cable. The manufacturing experience with these challenging cables will be reported. Finally, the implications for even larger cables, with more strands, will be discussed.
doi_str_mv 10.1109/TASC.2002.1018617
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_969601215</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1018617</ieee_id><sourcerecordid>1031301425</sourcerecordid><originalsourceid>FETCH-LOGICAL-c493t-c5a1fc63a37480b011cb1f9fa9f4cfd2bfb3ec202a060e67880a436d49a724223</originalsourceid><addsrcrecordid>eNqFkU1LxDAURYsoOI7-AHFTBMVNx7x8tOlS6scIIy4c1yXNvGiHTttJWtB_b0oHFBe6enlw7iHJDYJTIDMAkl4vb16yGSWEzoCAjCHZCyYghIyoALHvz0RAJCllh8GRc2tCgEsuJsHtk6p7o3TX27J-C_GjRVtirTE0jQ27dwwX8yws6xr9Zsu2wi7c9mpl-7apMNSqqNAdBwdGVQ5PdnMavN7fLbN5tHh-eMxuFpHmKesiLRQYHTPFEi5JQQB0ASY1KjVcmxUtTMFQU0IViQnGiZREcRaveKoSyv3dp8Hl6G1ts-3RdfmmdBqrStXY9C6nkiWCC_k_mFAQKQMPXv0JAvGQ_ysqPHr-C103va39e_M0TmMCXukhGCFtG-csmry15UbZT2_Kh6Lyoah8KCrfFeUzFzuxclpVxqpal-47yCQwkIP7bORKRPzhHS1fIVeZ4A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>969601215</pqid></control><display><type>article</type><title>Manufacturing experience for the LHC inner triplet quadrupole cables</title><source>IEEE Electronic Library (IEL)</source><creator>Scanlan, R.M. ; Higley, H.C. ; Bossert, R. ; Kerby, J. ; Ghosh, A.K. ; Boivin, M. ; Roy, T.</creator><creatorcontrib>Scanlan, R.M. ; Higley, H.C. ; Bossert, R. ; Kerby, J. ; Ghosh, A.K. ; Boivin, M. ; Roy, T.</creatorcontrib><description>The design for the U.S. LHC Inner Triplet Quadrupole magnet requires a 37 strand (inner layer) and a 46 strand (outer layer) cable. This represents the largest number of strands attempted to date for a production quantity of Rutherford-type cable. The cable parameters were optimized during the production of a series of short prototype magnets produced at FNAL. These optimization studies focused on critical current degradation, dimensional control, coil winding, and interstrand resistance. After the R&amp;D phase was complete, the technology was transferred to NEEW and a new cabling machine was installed to produce these cables. At present, about 60 unit lengths, out of 90 required for the entire production series of magnets, have been completed for each type of cable. The manufacturing experience with these challenging cables will be reported. Finally, the implications for even larger cables, with more strands, will be discussed.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2002.1018617</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Accelerator magnets ; Boring ; Cables ; Coils ; Coils (windings) ; Cyclic accelerators and storage rings ; Exact sciences and technology ; Experimental methods and instrumentation for elementary-particle and nuclear physics ; Laboratories ; Large Hadron Collider ; Manufacturing ; Nuclear physics ; Optimization ; Physics ; Production ; Prototypes ; Quadrupoles ; Research and development ; Strands ; Superconducting cables ; Superconducting magnets ; Superconductivity ; Winding</subject><ispartof>IEEE transactions on applied superconductivity, 2002-03, Vol.12 (1), p.1203-1206</ispartof><rights>2002 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c493t-c5a1fc63a37480b011cb1f9fa9f4cfd2bfb3ec202a060e67880a436d49a724223</citedby><cites>FETCH-LOGICAL-c493t-c5a1fc63a37480b011cb1f9fa9f4cfd2bfb3ec202a060e67880a436d49a724223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1018617$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,796,23930,23931,25140,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1018617$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13813185$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Scanlan, R.M.</creatorcontrib><creatorcontrib>Higley, H.C.</creatorcontrib><creatorcontrib>Bossert, R.</creatorcontrib><creatorcontrib>Kerby, J.</creatorcontrib><creatorcontrib>Ghosh, A.K.</creatorcontrib><creatorcontrib>Boivin, M.</creatorcontrib><creatorcontrib>Roy, T.</creatorcontrib><title>Manufacturing experience for the LHC inner triplet quadrupole cables</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>The design for the U.S. LHC Inner Triplet Quadrupole magnet requires a 37 strand (inner layer) and a 46 strand (outer layer) cable. This represents the largest number of strands attempted to date for a production quantity of Rutherford-type cable. The cable parameters were optimized during the production of a series of short prototype magnets produced at FNAL. These optimization studies focused on critical current degradation, dimensional control, coil winding, and interstrand resistance. After the R&amp;D phase was complete, the technology was transferred to NEEW and a new cabling machine was installed to produce these cables. At present, about 60 unit lengths, out of 90 required for the entire production series of magnets, have been completed for each type of cable. The manufacturing experience with these challenging cables will be reported. Finally, the implications for even larger cables, with more strands, will be discussed.</description><subject>Accelerator magnets</subject><subject>Boring</subject><subject>Cables</subject><subject>Coils</subject><subject>Coils (windings)</subject><subject>Cyclic accelerators and storage rings</subject><subject>Exact sciences and technology</subject><subject>Experimental methods and instrumentation for elementary-particle and nuclear physics</subject><subject>Laboratories</subject><subject>Large Hadron Collider</subject><subject>Manufacturing</subject><subject>Nuclear physics</subject><subject>Optimization</subject><subject>Physics</subject><subject>Production</subject><subject>Prototypes</subject><subject>Quadrupoles</subject><subject>Research and development</subject><subject>Strands</subject><subject>Superconducting cables</subject><subject>Superconducting magnets</subject><subject>Superconductivity</subject><subject>Winding</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkU1LxDAURYsoOI7-AHFTBMVNx7x8tOlS6scIIy4c1yXNvGiHTttJWtB_b0oHFBe6enlw7iHJDYJTIDMAkl4vb16yGSWEzoCAjCHZCyYghIyoALHvz0RAJCllh8GRc2tCgEsuJsHtk6p7o3TX27J-C_GjRVtirTE0jQ27dwwX8yws6xr9Zsu2wi7c9mpl-7apMNSqqNAdBwdGVQ5PdnMavN7fLbN5tHh-eMxuFpHmKesiLRQYHTPFEi5JQQB0ASY1KjVcmxUtTMFQU0IViQnGiZREcRaveKoSyv3dp8Hl6G1ts-3RdfmmdBqrStXY9C6nkiWCC_k_mFAQKQMPXv0JAvGQ_ysqPHr-C103va39e_M0TmMCXukhGCFtG-csmry15UbZT2_Kh6Lyoah8KCrfFeUzFzuxclpVxqpal-47yCQwkIP7bORKRPzhHS1fIVeZ4A</recordid><startdate>20020301</startdate><enddate>20020301</enddate><creator>Scanlan, R.M.</creator><creator>Higley, H.C.</creator><creator>Bossert, R.</creator><creator>Kerby, J.</creator><creator>Ghosh, A.K.</creator><creator>Boivin, M.</creator><creator>Roy, T.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20020301</creationdate><title>Manufacturing experience for the LHC inner triplet quadrupole cables</title><author>Scanlan, R.M. ; Higley, H.C. ; Bossert, R. ; Kerby, J. ; Ghosh, A.K. ; Boivin, M. ; Roy, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c493t-c5a1fc63a37480b011cb1f9fa9f4cfd2bfb3ec202a060e67880a436d49a724223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Accelerator magnets</topic><topic>Boring</topic><topic>Cables</topic><topic>Coils</topic><topic>Coils (windings)</topic><topic>Cyclic accelerators and storage rings</topic><topic>Exact sciences and technology</topic><topic>Experimental methods and instrumentation for elementary-particle and nuclear physics</topic><topic>Laboratories</topic><topic>Large Hadron Collider</topic><topic>Manufacturing</topic><topic>Nuclear physics</topic><topic>Optimization</topic><topic>Physics</topic><topic>Production</topic><topic>Prototypes</topic><topic>Quadrupoles</topic><topic>Research and development</topic><topic>Strands</topic><topic>Superconducting cables</topic><topic>Superconducting magnets</topic><topic>Superconductivity</topic><topic>Winding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scanlan, R.M.</creatorcontrib><creatorcontrib>Higley, H.C.</creatorcontrib><creatorcontrib>Bossert, R.</creatorcontrib><creatorcontrib>Kerby, J.</creatorcontrib><creatorcontrib>Ghosh, A.K.</creatorcontrib><creatorcontrib>Boivin, M.</creatorcontrib><creatorcontrib>Roy, T.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Scanlan, R.M.</au><au>Higley, H.C.</au><au>Bossert, R.</au><au>Kerby, J.</au><au>Ghosh, A.K.</au><au>Boivin, M.</au><au>Roy, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Manufacturing experience for the LHC inner triplet quadrupole cables</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2002-03-01</date><risdate>2002</risdate><volume>12</volume><issue>1</issue><spage>1203</spage><epage>1206</epage><pages>1203-1206</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>The design for the U.S. LHC Inner Triplet Quadrupole magnet requires a 37 strand (inner layer) and a 46 strand (outer layer) cable. This represents the largest number of strands attempted to date for a production quantity of Rutherford-type cable. The cable parameters were optimized during the production of a series of short prototype magnets produced at FNAL. These optimization studies focused on critical current degradation, dimensional control, coil winding, and interstrand resistance. After the R&amp;D phase was complete, the technology was transferred to NEEW and a new cabling machine was installed to produce these cables. At present, about 60 unit lengths, out of 90 required for the entire production series of magnets, have been completed for each type of cable. The manufacturing experience with these challenging cables will be reported. Finally, the implications for even larger cables, with more strands, will be discussed.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TASC.2002.1018617</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8223
ispartof IEEE transactions on applied superconductivity, 2002-03, Vol.12 (1), p.1203-1206
issn 1051-8223
1558-2515
language eng
recordid cdi_proquest_journals_969601215
source IEEE Electronic Library (IEL)
subjects Accelerator magnets
Boring
Cables
Coils
Coils (windings)
Cyclic accelerators and storage rings
Exact sciences and technology
Experimental methods and instrumentation for elementary-particle and nuclear physics
Laboratories
Large Hadron Collider
Manufacturing
Nuclear physics
Optimization
Physics
Production
Prototypes
Quadrupoles
Research and development
Strands
Superconducting cables
Superconducting magnets
Superconductivity
Winding
title Manufacturing experience for the LHC inner triplet quadrupole cables
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T01%3A15%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Manufacturing%20experience%20for%20the%20LHC%20inner%20triplet%20quadrupole%20cables&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Scanlan,%20R.M.&rft.date=2002-03-01&rft.volume=12&rft.issue=1&rft.spage=1203&rft.epage=1206&rft.pages=1203-1206&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2002.1018617&rft_dat=%3Cproquest_RIE%3E1031301425%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=969601215&rft_id=info:pmid/&rft_ieee_id=1018617&rfr_iscdi=true