Manufacturing experience for the LHC inner triplet quadrupole cables
The design for the U.S. LHC Inner Triplet Quadrupole magnet requires a 37 strand (inner layer) and a 46 strand (outer layer) cable. This represents the largest number of strands attempted to date for a production quantity of Rutherford-type cable. The cable parameters were optimized during the produ...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on applied superconductivity 2002-03, Vol.12 (1), p.1203-1206 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1206 |
---|---|
container_issue | 1 |
container_start_page | 1203 |
container_title | IEEE transactions on applied superconductivity |
container_volume | 12 |
creator | Scanlan, R.M. Higley, H.C. Bossert, R. Kerby, J. Ghosh, A.K. Boivin, M. Roy, T. |
description | The design for the U.S. LHC Inner Triplet Quadrupole magnet requires a 37 strand (inner layer) and a 46 strand (outer layer) cable. This represents the largest number of strands attempted to date for a production quantity of Rutherford-type cable. The cable parameters were optimized during the production of a series of short prototype magnets produced at FNAL. These optimization studies focused on critical current degradation, dimensional control, coil winding, and interstrand resistance. After the R&D phase was complete, the technology was transferred to NEEW and a new cabling machine was installed to produce these cables. At present, about 60 unit lengths, out of 90 required for the entire production series of magnets, have been completed for each type of cable. The manufacturing experience with these challenging cables will be reported. Finally, the implications for even larger cables, with more strands, will be discussed. |
doi_str_mv | 10.1109/TASC.2002.1018617 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_969601215</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1018617</ieee_id><sourcerecordid>1031301425</sourcerecordid><originalsourceid>FETCH-LOGICAL-c493t-c5a1fc63a37480b011cb1f9fa9f4cfd2bfb3ec202a060e67880a436d49a724223</originalsourceid><addsrcrecordid>eNqFkU1LxDAURYsoOI7-AHFTBMVNx7x8tOlS6scIIy4c1yXNvGiHTttJWtB_b0oHFBe6enlw7iHJDYJTIDMAkl4vb16yGSWEzoCAjCHZCyYghIyoALHvz0RAJCllh8GRc2tCgEsuJsHtk6p7o3TX27J-C_GjRVtirTE0jQ27dwwX8yws6xr9Zsu2wi7c9mpl-7apMNSqqNAdBwdGVQ5PdnMavN7fLbN5tHh-eMxuFpHmKesiLRQYHTPFEi5JQQB0ASY1KjVcmxUtTMFQU0IViQnGiZREcRaveKoSyv3dp8Hl6G1ts-3RdfmmdBqrStXY9C6nkiWCC_k_mFAQKQMPXv0JAvGQ_ysqPHr-C103va39e_M0TmMCXukhGCFtG-csmry15UbZT2_Kh6Lyoah8KCrfFeUzFzuxclpVxqpal-47yCQwkIP7bORKRPzhHS1fIVeZ4A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>969601215</pqid></control><display><type>article</type><title>Manufacturing experience for the LHC inner triplet quadrupole cables</title><source>IEEE Electronic Library (IEL)</source><creator>Scanlan, R.M. ; Higley, H.C. ; Bossert, R. ; Kerby, J. ; Ghosh, A.K. ; Boivin, M. ; Roy, T.</creator><creatorcontrib>Scanlan, R.M. ; Higley, H.C. ; Bossert, R. ; Kerby, J. ; Ghosh, A.K. ; Boivin, M. ; Roy, T.</creatorcontrib><description>The design for the U.S. LHC Inner Triplet Quadrupole magnet requires a 37 strand (inner layer) and a 46 strand (outer layer) cable. This represents the largest number of strands attempted to date for a production quantity of Rutherford-type cable. The cable parameters were optimized during the production of a series of short prototype magnets produced at FNAL. These optimization studies focused on critical current degradation, dimensional control, coil winding, and interstrand resistance. After the R&D phase was complete, the technology was transferred to NEEW and a new cabling machine was installed to produce these cables. At present, about 60 unit lengths, out of 90 required for the entire production series of magnets, have been completed for each type of cable. The manufacturing experience with these challenging cables will be reported. Finally, the implications for even larger cables, with more strands, will be discussed.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2002.1018617</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Accelerator magnets ; Boring ; Cables ; Coils ; Coils (windings) ; Cyclic accelerators and storage rings ; Exact sciences and technology ; Experimental methods and instrumentation for elementary-particle and nuclear physics ; Laboratories ; Large Hadron Collider ; Manufacturing ; Nuclear physics ; Optimization ; Physics ; Production ; Prototypes ; Quadrupoles ; Research and development ; Strands ; Superconducting cables ; Superconducting magnets ; Superconductivity ; Winding</subject><ispartof>IEEE transactions on applied superconductivity, 2002-03, Vol.12 (1), p.1203-1206</ispartof><rights>2002 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c493t-c5a1fc63a37480b011cb1f9fa9f4cfd2bfb3ec202a060e67880a436d49a724223</citedby><cites>FETCH-LOGICAL-c493t-c5a1fc63a37480b011cb1f9fa9f4cfd2bfb3ec202a060e67880a436d49a724223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1018617$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,796,23930,23931,25140,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1018617$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13813185$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Scanlan, R.M.</creatorcontrib><creatorcontrib>Higley, H.C.</creatorcontrib><creatorcontrib>Bossert, R.</creatorcontrib><creatorcontrib>Kerby, J.</creatorcontrib><creatorcontrib>Ghosh, A.K.</creatorcontrib><creatorcontrib>Boivin, M.</creatorcontrib><creatorcontrib>Roy, T.</creatorcontrib><title>Manufacturing experience for the LHC inner triplet quadrupole cables</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>The design for the U.S. LHC Inner Triplet Quadrupole magnet requires a 37 strand (inner layer) and a 46 strand (outer layer) cable. This represents the largest number of strands attempted to date for a production quantity of Rutherford-type cable. The cable parameters were optimized during the production of a series of short prototype magnets produced at FNAL. These optimization studies focused on critical current degradation, dimensional control, coil winding, and interstrand resistance. After the R&D phase was complete, the technology was transferred to NEEW and a new cabling machine was installed to produce these cables. At present, about 60 unit lengths, out of 90 required for the entire production series of magnets, have been completed for each type of cable. The manufacturing experience with these challenging cables will be reported. Finally, the implications for even larger cables, with more strands, will be discussed.</description><subject>Accelerator magnets</subject><subject>Boring</subject><subject>Cables</subject><subject>Coils</subject><subject>Coils (windings)</subject><subject>Cyclic accelerators and storage rings</subject><subject>Exact sciences and technology</subject><subject>Experimental methods and instrumentation for elementary-particle and nuclear physics</subject><subject>Laboratories</subject><subject>Large Hadron Collider</subject><subject>Manufacturing</subject><subject>Nuclear physics</subject><subject>Optimization</subject><subject>Physics</subject><subject>Production</subject><subject>Prototypes</subject><subject>Quadrupoles</subject><subject>Research and development</subject><subject>Strands</subject><subject>Superconducting cables</subject><subject>Superconducting magnets</subject><subject>Superconductivity</subject><subject>Winding</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkU1LxDAURYsoOI7-AHFTBMVNx7x8tOlS6scIIy4c1yXNvGiHTttJWtB_b0oHFBe6enlw7iHJDYJTIDMAkl4vb16yGSWEzoCAjCHZCyYghIyoALHvz0RAJCllh8GRc2tCgEsuJsHtk6p7o3TX27J-C_GjRVtirTE0jQ27dwwX8yws6xr9Zsu2wi7c9mpl-7apMNSqqNAdBwdGVQ5PdnMavN7fLbN5tHh-eMxuFpHmKesiLRQYHTPFEi5JQQB0ASY1KjVcmxUtTMFQU0IViQnGiZREcRaveKoSyv3dp8Hl6G1ts-3RdfmmdBqrStXY9C6nkiWCC_k_mFAQKQMPXv0JAvGQ_ysqPHr-C103va39e_M0TmMCXukhGCFtG-csmry15UbZT2_Kh6Lyoah8KCrfFeUzFzuxclpVxqpal-47yCQwkIP7bORKRPzhHS1fIVeZ4A</recordid><startdate>20020301</startdate><enddate>20020301</enddate><creator>Scanlan, R.M.</creator><creator>Higley, H.C.</creator><creator>Bossert, R.</creator><creator>Kerby, J.</creator><creator>Ghosh, A.K.</creator><creator>Boivin, M.</creator><creator>Roy, T.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20020301</creationdate><title>Manufacturing experience for the LHC inner triplet quadrupole cables</title><author>Scanlan, R.M. ; Higley, H.C. ; Bossert, R. ; Kerby, J. ; Ghosh, A.K. ; Boivin, M. ; Roy, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c493t-c5a1fc63a37480b011cb1f9fa9f4cfd2bfb3ec202a060e67880a436d49a724223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Accelerator magnets</topic><topic>Boring</topic><topic>Cables</topic><topic>Coils</topic><topic>Coils (windings)</topic><topic>Cyclic accelerators and storage rings</topic><topic>Exact sciences and technology</topic><topic>Experimental methods and instrumentation for elementary-particle and nuclear physics</topic><topic>Laboratories</topic><topic>Large Hadron Collider</topic><topic>Manufacturing</topic><topic>Nuclear physics</topic><topic>Optimization</topic><topic>Physics</topic><topic>Production</topic><topic>Prototypes</topic><topic>Quadrupoles</topic><topic>Research and development</topic><topic>Strands</topic><topic>Superconducting cables</topic><topic>Superconducting magnets</topic><topic>Superconductivity</topic><topic>Winding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scanlan, R.M.</creatorcontrib><creatorcontrib>Higley, H.C.</creatorcontrib><creatorcontrib>Bossert, R.</creatorcontrib><creatorcontrib>Kerby, J.</creatorcontrib><creatorcontrib>Ghosh, A.K.</creatorcontrib><creatorcontrib>Boivin, M.</creatorcontrib><creatorcontrib>Roy, T.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Scanlan, R.M.</au><au>Higley, H.C.</au><au>Bossert, R.</au><au>Kerby, J.</au><au>Ghosh, A.K.</au><au>Boivin, M.</au><au>Roy, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Manufacturing experience for the LHC inner triplet quadrupole cables</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2002-03-01</date><risdate>2002</risdate><volume>12</volume><issue>1</issue><spage>1203</spage><epage>1206</epage><pages>1203-1206</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>The design for the U.S. LHC Inner Triplet Quadrupole magnet requires a 37 strand (inner layer) and a 46 strand (outer layer) cable. This represents the largest number of strands attempted to date for a production quantity of Rutherford-type cable. The cable parameters were optimized during the production of a series of short prototype magnets produced at FNAL. These optimization studies focused on critical current degradation, dimensional control, coil winding, and interstrand resistance. After the R&D phase was complete, the technology was transferred to NEEW and a new cabling machine was installed to produce these cables. At present, about 60 unit lengths, out of 90 required for the entire production series of magnets, have been completed for each type of cable. The manufacturing experience with these challenging cables will be reported. Finally, the implications for even larger cables, with more strands, will be discussed.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TASC.2002.1018617</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-8223 |
ispartof | IEEE transactions on applied superconductivity, 2002-03, Vol.12 (1), p.1203-1206 |
issn | 1051-8223 1558-2515 |
language | eng |
recordid | cdi_proquest_journals_969601215 |
source | IEEE Electronic Library (IEL) |
subjects | Accelerator magnets Boring Cables Coils Coils (windings) Cyclic accelerators and storage rings Exact sciences and technology Experimental methods and instrumentation for elementary-particle and nuclear physics Laboratories Large Hadron Collider Manufacturing Nuclear physics Optimization Physics Production Prototypes Quadrupoles Research and development Strands Superconducting cables Superconducting magnets Superconductivity Winding |
title | Manufacturing experience for the LHC inner triplet quadrupole cables |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T01%3A15%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Manufacturing%20experience%20for%20the%20LHC%20inner%20triplet%20quadrupole%20cables&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Scanlan,%20R.M.&rft.date=2002-03-01&rft.volume=12&rft.issue=1&rft.spage=1203&rft.epage=1206&rft.pages=1203-1206&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2002.1018617&rft_dat=%3Cproquest_RIE%3E1031301425%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=969601215&rft_id=info:pmid/&rft_ieee_id=1018617&rfr_iscdi=true |