Disentangling the Electronic and Phononic Glue in a High- T c Superconductor

The phenomenon of superconductivity, in which a material suddenly (below a certain transition temperature T c ) becomes a perfect conductor with zero electrical resistance, can be roughly explained in terms of Bose-Einstein condensation of pairs of electrons. In conventional superconductors, the for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2012-03, Vol.335 (6076), p.1600-1603
Hauptverfasser: Dal Conte, S., Giannetti, C., Coslovich, G., Cilento, F., Bossini, D., Abebaw, T., Banfi, F., Ferrini, G., Eisaki, H., Greven, M., Damascelli, A., van der Marel, D., Parmigiani, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1603
container_issue 6076
container_start_page 1600
container_title Science (American Association for the Advancement of Science)
container_volume 335
creator Dal Conte, S.
Giannetti, C.
Coslovich, G.
Cilento, F.
Bossini, D.
Abebaw, T.
Banfi, F.
Ferrini, G.
Eisaki, H.
Greven, M.
Damascelli, A.
van der Marel, D.
Parmigiani, F.
description The phenomenon of superconductivity, in which a material suddenly (below a certain transition temperature T c ) becomes a perfect conductor with zero electrical resistance, can be roughly explained in terms of Bose-Einstein condensation of pairs of electrons. In conventional superconductors, the formation of these so-called Cooper pairs is mediated by lattice deformations (phonons), but this mechanism is insufficient to explain the high T c of cuprate superconductors. Other mechanisms, such as magnetic fluctuations, have been proposed which originate with the electrons themselves rather than the lattice. Dal Conte et al. (p. 1600 ) used time-resolved optical spectroscopy of an optimally doped cuprate to show that the temporal evolution of the reflectivity is consistent with the electronic contribution being dominant and is able to account for the high T c by itself. A time-resolved optical technique resolves the influence of lattice dynamics on electron pairing in a cuprate. Unveiling the nature of the bosonic excitations that mediate the formation of Cooper pairs is a key issue for understanding unconventional superconductivity. A fundamental step toward this goal would be to identify the relative weight of the electronic and phononic contributions to the overall frequency (Ω)–dependent bosonic function, Π(Ω). We performed optical spectroscopy on Bi 2 Sr 2 Ca 0.92 Y 0.08 Cu 2 O 8+δ crystals with simultaneous time and frequency resolution; this technique allowed us to disentangle the electronic and phononic contributions by their different temporal evolution. The spectral distribution of the electronic excitations and the strength of their interaction with fermionic quasiparticles fully account for the high critical temperature of the superconducting phase transition.
doi_str_mv 10.1126/science.1216765
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_963963556</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2625673681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c198t-bad59b0b7e243592456ee6ad303cff3b25e7a37541584cf9b3db37687e34682a3</originalsourceid><addsrcrecordid>eNotkE1LAzEQhoMoWKtnr8H7tvnYJJuj1NoKBQXrOWSzs23KmtRk9-C_d2sLLwwv8zADD0KPlMwoZXKenYfgYEYZlUqKKzShRItCM8Kv0YQQLouKKHGL7nI-EDLuNJ-gzYvPEHobdp0PO9zvAS87cH2KwTtsQ4M_9jH8l1U3APYBW7z2u32Bt9jhz-EIycXQDK6P6R7dtLbL8HCZU_T1utwu1sXmffW2eN4UjuqqL2rbCF2TWgErudCsFBJA2oYT7tqW10yAslyJkoqqdK2ueVNzJSsFvJQVs3yKns53jyn-DJB7c4hDCuNLoyUfI4QcofkZcinmnKA1x-S_bfo1lJiTMXMxZi7G-B92w18f</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>963963556</pqid></control><display><type>article</type><title>Disentangling the Electronic and Phononic Glue in a High- T c Superconductor</title><source>Jstor Complete Legacy</source><source>Science Magazine</source><creator>Dal Conte, S. ; Giannetti, C. ; Coslovich, G. ; Cilento, F. ; Bossini, D. ; Abebaw, T. ; Banfi, F. ; Ferrini, G. ; Eisaki, H. ; Greven, M. ; Damascelli, A. ; van der Marel, D. ; Parmigiani, F.</creator><creatorcontrib>Dal Conte, S. ; Giannetti, C. ; Coslovich, G. ; Cilento, F. ; Bossini, D. ; Abebaw, T. ; Banfi, F. ; Ferrini, G. ; Eisaki, H. ; Greven, M. ; Damascelli, A. ; van der Marel, D. ; Parmigiani, F.</creatorcontrib><description>The phenomenon of superconductivity, in which a material suddenly (below a certain transition temperature T c ) becomes a perfect conductor with zero electrical resistance, can be roughly explained in terms of Bose-Einstein condensation of pairs of electrons. In conventional superconductors, the formation of these so-called Cooper pairs is mediated by lattice deformations (phonons), but this mechanism is insufficient to explain the high T c of cuprate superconductors. Other mechanisms, such as magnetic fluctuations, have been proposed which originate with the electrons themselves rather than the lattice. Dal Conte et al. (p. 1600 ) used time-resolved optical spectroscopy of an optimally doped cuprate to show that the temporal evolution of the reflectivity is consistent with the electronic contribution being dominant and is able to account for the high T c by itself. A time-resolved optical technique resolves the influence of lattice dynamics on electron pairing in a cuprate. Unveiling the nature of the bosonic excitations that mediate the formation of Cooper pairs is a key issue for understanding unconventional superconductivity. A fundamental step toward this goal would be to identify the relative weight of the electronic and phononic contributions to the overall frequency (Ω)–dependent bosonic function, Π(Ω). We performed optical spectroscopy on Bi 2 Sr 2 Ca 0.92 Y 0.08 Cu 2 O 8+δ crystals with simultaneous time and frequency resolution; this technique allowed us to disentangle the electronic and phononic contributions by their different temporal evolution. The spectral distribution of the electronic excitations and the strength of their interaction with fermionic quasiparticles fully account for the high critical temperature of the superconducting phase transition.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1216765</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington: The American Association for the Advancement of Science</publisher><subject>Particle physics ; Phase transitions ; Spectroscopy ; Spectrum analysis ; Superconductors</subject><ispartof>Science (American Association for the Advancement of Science), 2012-03, Vol.335 (6076), p.1600-1603</ispartof><rights>Copyright © 2012, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c198t-bad59b0b7e243592456ee6ad303cff3b25e7a37541584cf9b3db37687e34682a3</citedby><cites>FETCH-LOGICAL-c198t-bad59b0b7e243592456ee6ad303cff3b25e7a37541584cf9b3db37687e34682a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2871,2872,27903,27904</link.rule.ids></links><search><creatorcontrib>Dal Conte, S.</creatorcontrib><creatorcontrib>Giannetti, C.</creatorcontrib><creatorcontrib>Coslovich, G.</creatorcontrib><creatorcontrib>Cilento, F.</creatorcontrib><creatorcontrib>Bossini, D.</creatorcontrib><creatorcontrib>Abebaw, T.</creatorcontrib><creatorcontrib>Banfi, F.</creatorcontrib><creatorcontrib>Ferrini, G.</creatorcontrib><creatorcontrib>Eisaki, H.</creatorcontrib><creatorcontrib>Greven, M.</creatorcontrib><creatorcontrib>Damascelli, A.</creatorcontrib><creatorcontrib>van der Marel, D.</creatorcontrib><creatorcontrib>Parmigiani, F.</creatorcontrib><title>Disentangling the Electronic and Phononic Glue in a High- T c Superconductor</title><title>Science (American Association for the Advancement of Science)</title><description>The phenomenon of superconductivity, in which a material suddenly (below a certain transition temperature T c ) becomes a perfect conductor with zero electrical resistance, can be roughly explained in terms of Bose-Einstein condensation of pairs of electrons. In conventional superconductors, the formation of these so-called Cooper pairs is mediated by lattice deformations (phonons), but this mechanism is insufficient to explain the high T c of cuprate superconductors. Other mechanisms, such as magnetic fluctuations, have been proposed which originate with the electrons themselves rather than the lattice. Dal Conte et al. (p. 1600 ) used time-resolved optical spectroscopy of an optimally doped cuprate to show that the temporal evolution of the reflectivity is consistent with the electronic contribution being dominant and is able to account for the high T c by itself. A time-resolved optical technique resolves the influence of lattice dynamics on electron pairing in a cuprate. Unveiling the nature of the bosonic excitations that mediate the formation of Cooper pairs is a key issue for understanding unconventional superconductivity. A fundamental step toward this goal would be to identify the relative weight of the electronic and phononic contributions to the overall frequency (Ω)–dependent bosonic function, Π(Ω). We performed optical spectroscopy on Bi 2 Sr 2 Ca 0.92 Y 0.08 Cu 2 O 8+δ crystals with simultaneous time and frequency resolution; this technique allowed us to disentangle the electronic and phononic contributions by their different temporal evolution. The spectral distribution of the electronic excitations and the strength of their interaction with fermionic quasiparticles fully account for the high critical temperature of the superconducting phase transition.</description><subject>Particle physics</subject><subject>Phase transitions</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Superconductors</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNotkE1LAzEQhoMoWKtnr8H7tvnYJJuj1NoKBQXrOWSzs23KmtRk9-C_d2sLLwwv8zADD0KPlMwoZXKenYfgYEYZlUqKKzShRItCM8Kv0YQQLouKKHGL7nI-EDLuNJ-gzYvPEHobdp0PO9zvAS87cH2KwTtsQ4M_9jH8l1U3APYBW7z2u32Bt9jhz-EIycXQDK6P6R7dtLbL8HCZU_T1utwu1sXmffW2eN4UjuqqL2rbCF2TWgErudCsFBJA2oYT7tqW10yAslyJkoqqdK2ueVNzJSsFvJQVs3yKns53jyn-DJB7c4hDCuNLoyUfI4QcofkZcinmnKA1x-S_bfo1lJiTMXMxZi7G-B92w18f</recordid><startdate>20120330</startdate><enddate>20120330</enddate><creator>Dal Conte, S.</creator><creator>Giannetti, C.</creator><creator>Coslovich, G.</creator><creator>Cilento, F.</creator><creator>Bossini, D.</creator><creator>Abebaw, T.</creator><creator>Banfi, F.</creator><creator>Ferrini, G.</creator><creator>Eisaki, H.</creator><creator>Greven, M.</creator><creator>Damascelli, A.</creator><creator>van der Marel, D.</creator><creator>Parmigiani, F.</creator><general>The American Association for the Advancement of Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20120330</creationdate><title>Disentangling the Electronic and Phononic Glue in a High- T c Superconductor</title><author>Dal Conte, S. ; Giannetti, C. ; Coslovich, G. ; Cilento, F. ; Bossini, D. ; Abebaw, T. ; Banfi, F. ; Ferrini, G. ; Eisaki, H. ; Greven, M. ; Damascelli, A. ; van der Marel, D. ; Parmigiani, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c198t-bad59b0b7e243592456ee6ad303cff3b25e7a37541584cf9b3db37687e34682a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Particle physics</topic><topic>Phase transitions</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Superconductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dal Conte, S.</creatorcontrib><creatorcontrib>Giannetti, C.</creatorcontrib><creatorcontrib>Coslovich, G.</creatorcontrib><creatorcontrib>Cilento, F.</creatorcontrib><creatorcontrib>Bossini, D.</creatorcontrib><creatorcontrib>Abebaw, T.</creatorcontrib><creatorcontrib>Banfi, F.</creatorcontrib><creatorcontrib>Ferrini, G.</creatorcontrib><creatorcontrib>Eisaki, H.</creatorcontrib><creatorcontrib>Greven, M.</creatorcontrib><creatorcontrib>Damascelli, A.</creatorcontrib><creatorcontrib>van der Marel, D.</creatorcontrib><creatorcontrib>Parmigiani, F.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dal Conte, S.</au><au>Giannetti, C.</au><au>Coslovich, G.</au><au>Cilento, F.</au><au>Bossini, D.</au><au>Abebaw, T.</au><au>Banfi, F.</au><au>Ferrini, G.</au><au>Eisaki, H.</au><au>Greven, M.</au><au>Damascelli, A.</au><au>van der Marel, D.</au><au>Parmigiani, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Disentangling the Electronic and Phononic Glue in a High- T c Superconductor</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><date>2012-03-30</date><risdate>2012</risdate><volume>335</volume><issue>6076</issue><spage>1600</spage><epage>1603</epage><pages>1600-1603</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>The phenomenon of superconductivity, in which a material suddenly (below a certain transition temperature T c ) becomes a perfect conductor with zero electrical resistance, can be roughly explained in terms of Bose-Einstein condensation of pairs of electrons. In conventional superconductors, the formation of these so-called Cooper pairs is mediated by lattice deformations (phonons), but this mechanism is insufficient to explain the high T c of cuprate superconductors. Other mechanisms, such as magnetic fluctuations, have been proposed which originate with the electrons themselves rather than the lattice. Dal Conte et al. (p. 1600 ) used time-resolved optical spectroscopy of an optimally doped cuprate to show that the temporal evolution of the reflectivity is consistent with the electronic contribution being dominant and is able to account for the high T c by itself. A time-resolved optical technique resolves the influence of lattice dynamics on electron pairing in a cuprate. Unveiling the nature of the bosonic excitations that mediate the formation of Cooper pairs is a key issue for understanding unconventional superconductivity. A fundamental step toward this goal would be to identify the relative weight of the electronic and phononic contributions to the overall frequency (Ω)–dependent bosonic function, Π(Ω). We performed optical spectroscopy on Bi 2 Sr 2 Ca 0.92 Y 0.08 Cu 2 O 8+δ crystals with simultaneous time and frequency resolution; this technique allowed us to disentangle the electronic and phononic contributions by their different temporal evolution. The spectral distribution of the electronic excitations and the strength of their interaction with fermionic quasiparticles fully account for the high critical temperature of the superconducting phase transition.</abstract><cop>Washington</cop><pub>The American Association for the Advancement of Science</pub><doi>10.1126/science.1216765</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2012-03, Vol.335 (6076), p.1600-1603
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_journals_963963556
source Jstor Complete Legacy; Science Magazine
subjects Particle physics
Phase transitions
Spectroscopy
Spectrum analysis
Superconductors
title Disentangling the Electronic and Phononic Glue in a High- T c Superconductor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A08%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Disentangling%20the%20Electronic%20and%20Phononic%20Glue%20in%20a%20High-%20T%20c%20Superconductor&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Dal%20Conte,%20S.&rft.date=2012-03-30&rft.volume=335&rft.issue=6076&rft.spage=1600&rft.epage=1603&rft.pages=1600-1603&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1216765&rft_dat=%3Cproquest_cross%3E2625673681%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=963963556&rft_id=info:pmid/&rfr_iscdi=true