Interaction of α-Lactalbumin with Mini-αA-Crystallin

αA-Crystallin can function like a molecular chaperone. We have recently shown that residues 71-88 in αA-crystallin represent the “chaperone active site” of the protein. A peptide containing the sequence of αA-crystallin sequence DFVIFLDVKHFSPEDLTVK (mini αA-crystallin) by itself displays the antiagg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Protein Chemistry 2001-02, Vol.20 (2), p.123-130
Hauptverfasser: Sreelakshmi, Y., Sharma, K. Krishna
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 130
container_issue 2
container_start_page 123
container_title Journal of Protein Chemistry
container_volume 20
creator Sreelakshmi, Y.
Sharma, K. Krishna
description αA-Crystallin can function like a molecular chaperone. We have recently shown that residues 71-88 in αA-crystallin represent the “chaperone active site” of the protein. A peptide containing the sequence of αA-crystallin sequence DFVIFLDVKHFSPEDLTVK (mini αA-crystallin) by itself displays the antiaggregation property of αA-crystallin. We have prepared a complex of reduced α-lactalbumin and mini-αA-crystallin and investigated the nature, conformation, and properties of the complex by dynamic light scattering, HPLC analysis, CD spectroscopy, and fluorescence studies. Although mini-αA was able to prevent the precipitation of reduced α-lactalbumin, large aggregates (50-500 nm) of the complex were formed during the assay. Amino acid composition estimation revealed that α-lactalbumin and mini-αA-crystallin were present in 1:2 ratio in the aggregates. During our study significant red shift in the Trp fluorescence emission maximum and an increase in Bis-ANS binding to the mini αA-crystallin-bound α-lacatalbumin were observed. The CD spectra of the complex showed a significant loss of α-helical content but the β-sheet content appeared to be less affected, indicating the molten-globule state of the reduced lactalbumin in the complex. These data show that the active site of αA-crystallin by itself can maintain a significantly denatured and unfolded protein in soluble form.
doi_str_mv 10.1023/A:1011077307262
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_963537102</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2624125781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-fb7813f795a5bc328d966d0b4c617ede1a5de39a1cba35a1c8ade533afd88123</originalsourceid><addsrcrecordid>eNpVUM1Kw0AYXETBGD17Dd7Xfpsv-xNvoWgtRLz0vmySDW5Jk7qbIH2svkifyZR68TQMM8wwQ8gjg2cGKS6KFwaMgZQIMhXpFYkYl0izPMNrEkEqJVWAeEvuQtgCQK4URESs-9F6U49u6JOhTU5HWs7MdNW0c33y48av5MP1jp6OBV36Q5ilzvX35KY1XbAPfxiTzdvrZvlOy8_VelmUtEYUI20rqRi2MueGVzWmqsmFaKDKasGkbSwzvLGYG1ZXBvkMyjSWI5q2UYqlGJOnS-zeD9-TDaPeDpPv50adC-Qoz8tjsriYaj-E4G2r997tjD9oBvps0IX-dw3-Ak1KVtY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>963537102</pqid></control><display><type>article</type><title>Interaction of α-Lactalbumin with Mini-αA-Crystallin</title><source>Springer Nature - Complete Springer Journals</source><creator>Sreelakshmi, Y. ; Sharma, K. Krishna</creator><creatorcontrib>Sreelakshmi, Y. ; Sharma, K. Krishna</creatorcontrib><description>αA-Crystallin can function like a molecular chaperone. We have recently shown that residues 71-88 in αA-crystallin represent the “chaperone active site” of the protein. A peptide containing the sequence of αA-crystallin sequence DFVIFLDVKHFSPEDLTVK (mini αA-crystallin) by itself displays the antiaggregation property of αA-crystallin. We have prepared a complex of reduced α-lactalbumin and mini-αA-crystallin and investigated the nature, conformation, and properties of the complex by dynamic light scattering, HPLC analysis, CD spectroscopy, and fluorescence studies. Although mini-αA was able to prevent the precipitation of reduced α-lactalbumin, large aggregates (50-500 nm) of the complex were formed during the assay. Amino acid composition estimation revealed that α-lactalbumin and mini-αA-crystallin were present in 1:2 ratio in the aggregates. During our study significant red shift in the Trp fluorescence emission maximum and an increase in Bis-ANS binding to the mini αA-crystallin-bound α-lacatalbumin were observed. The CD spectra of the complex showed a significant loss of α-helical content but the β-sheet content appeared to be less affected, indicating the molten-globule state of the reduced lactalbumin in the complex. These data show that the active site of αA-crystallin by itself can maintain a significantly denatured and unfolded protein in soluble form.</description><identifier>ISSN: 0277-8033</identifier><identifier>ISSN: 1572-3887</identifier><identifier>EISSN: 1573-4943</identifier><identifier>DOI: 10.1023/A:1011077307262</identifier><language>eng</language><publisher>New York: Springer Nature B.V</publisher><subject>Aggregates ; Amino acid composition ; Amino acids ; Crystallin ; Doppler effect ; Emission analysis ; Fluorescence ; Lactalbumin ; Light scattering ; Liquid chromatography ; Molecular biology ; Peptides ; Photon correlation spectroscopy ; Protein folding ; Proteins ; Red shift ; Spectroscopy ; Spectrum analysis</subject><ispartof>Journal of Protein Chemistry, 2001-02, Vol.20 (2), p.123-130</ispartof><rights>Plenum Publishing Corporation 2001.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-fb7813f795a5bc328d966d0b4c617ede1a5de39a1cba35a1c8ade533afd88123</citedby><cites>FETCH-LOGICAL-c336t-fb7813f795a5bc328d966d0b4c617ede1a5de39a1cba35a1c8ade533afd88123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Sreelakshmi, Y.</creatorcontrib><creatorcontrib>Sharma, K. Krishna</creatorcontrib><title>Interaction of α-Lactalbumin with Mini-αA-Crystallin</title><title>Journal of Protein Chemistry</title><description>αA-Crystallin can function like a molecular chaperone. We have recently shown that residues 71-88 in αA-crystallin represent the “chaperone active site” of the protein. A peptide containing the sequence of αA-crystallin sequence DFVIFLDVKHFSPEDLTVK (mini αA-crystallin) by itself displays the antiaggregation property of αA-crystallin. We have prepared a complex of reduced α-lactalbumin and mini-αA-crystallin and investigated the nature, conformation, and properties of the complex by dynamic light scattering, HPLC analysis, CD spectroscopy, and fluorescence studies. Although mini-αA was able to prevent the precipitation of reduced α-lactalbumin, large aggregates (50-500 nm) of the complex were formed during the assay. Amino acid composition estimation revealed that α-lactalbumin and mini-αA-crystallin were present in 1:2 ratio in the aggregates. During our study significant red shift in the Trp fluorescence emission maximum and an increase in Bis-ANS binding to the mini αA-crystallin-bound α-lacatalbumin were observed. The CD spectra of the complex showed a significant loss of α-helical content but the β-sheet content appeared to be less affected, indicating the molten-globule state of the reduced lactalbumin in the complex. These data show that the active site of αA-crystallin by itself can maintain a significantly denatured and unfolded protein in soluble form.</description><subject>Aggregates</subject><subject>Amino acid composition</subject><subject>Amino acids</subject><subject>Crystallin</subject><subject>Doppler effect</subject><subject>Emission analysis</subject><subject>Fluorescence</subject><subject>Lactalbumin</subject><subject>Light scattering</subject><subject>Liquid chromatography</subject><subject>Molecular biology</subject><subject>Peptides</subject><subject>Photon correlation spectroscopy</subject><subject>Protein folding</subject><subject>Proteins</subject><subject>Red shift</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><issn>0277-8033</issn><issn>1572-3887</issn><issn>1573-4943</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpVUM1Kw0AYXETBGD17Dd7Xfpsv-xNvoWgtRLz0vmySDW5Jk7qbIH2svkifyZR68TQMM8wwQ8gjg2cGKS6KFwaMgZQIMhXpFYkYl0izPMNrEkEqJVWAeEvuQtgCQK4URESs-9F6U49u6JOhTU5HWs7MdNW0c33y48av5MP1jp6OBV36Q5ilzvX35KY1XbAPfxiTzdvrZvlOy8_VelmUtEYUI20rqRi2MueGVzWmqsmFaKDKasGkbSwzvLGYG1ZXBvkMyjSWI5q2UYqlGJOnS-zeD9-TDaPeDpPv50adC-Qoz8tjsriYaj-E4G2r997tjD9oBvps0IX-dw3-Ak1KVtY</recordid><startdate>20010201</startdate><enddate>20010201</enddate><creator>Sreelakshmi, Y.</creator><creator>Sharma, K. Krishna</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7TK</scope><scope>7TM</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope></search><sort><creationdate>20010201</creationdate><title>Interaction of α-Lactalbumin with Mini-αA-Crystallin</title><author>Sreelakshmi, Y. ; Sharma, K. Krishna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-fb7813f795a5bc328d966d0b4c617ede1a5de39a1cba35a1c8ade533afd88123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Aggregates</topic><topic>Amino acid composition</topic><topic>Amino acids</topic><topic>Crystallin</topic><topic>Doppler effect</topic><topic>Emission analysis</topic><topic>Fluorescence</topic><topic>Lactalbumin</topic><topic>Light scattering</topic><topic>Liquid chromatography</topic><topic>Molecular biology</topic><topic>Peptides</topic><topic>Photon correlation spectroscopy</topic><topic>Protein folding</topic><topic>Proteins</topic><topic>Red shift</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sreelakshmi, Y.</creatorcontrib><creatorcontrib>Sharma, K. Krishna</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><jtitle>Journal of Protein Chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sreelakshmi, Y.</au><au>Sharma, K. Krishna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interaction of α-Lactalbumin with Mini-αA-Crystallin</atitle><jtitle>Journal of Protein Chemistry</jtitle><date>2001-02-01</date><risdate>2001</risdate><volume>20</volume><issue>2</issue><spage>123</spage><epage>130</epage><pages>123-130</pages><issn>0277-8033</issn><issn>1572-3887</issn><eissn>1573-4943</eissn><abstract>αA-Crystallin can function like a molecular chaperone. We have recently shown that residues 71-88 in αA-crystallin represent the “chaperone active site” of the protein. A peptide containing the sequence of αA-crystallin sequence DFVIFLDVKHFSPEDLTVK (mini αA-crystallin) by itself displays the antiaggregation property of αA-crystallin. We have prepared a complex of reduced α-lactalbumin and mini-αA-crystallin and investigated the nature, conformation, and properties of the complex by dynamic light scattering, HPLC analysis, CD spectroscopy, and fluorescence studies. Although mini-αA was able to prevent the precipitation of reduced α-lactalbumin, large aggregates (50-500 nm) of the complex were formed during the assay. Amino acid composition estimation revealed that α-lactalbumin and mini-αA-crystallin were present in 1:2 ratio in the aggregates. During our study significant red shift in the Trp fluorescence emission maximum and an increase in Bis-ANS binding to the mini αA-crystallin-bound α-lacatalbumin were observed. The CD spectra of the complex showed a significant loss of α-helical content but the β-sheet content appeared to be less affected, indicating the molten-globule state of the reduced lactalbumin in the complex. These data show that the active site of αA-crystallin by itself can maintain a significantly denatured and unfolded protein in soluble form.</abstract><cop>New York</cop><pub>Springer Nature B.V</pub><doi>10.1023/A:1011077307262</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0277-8033
ispartof Journal of Protein Chemistry, 2001-02, Vol.20 (2), p.123-130
issn 0277-8033
1572-3887
1573-4943
language eng
recordid cdi_proquest_journals_963537102
source Springer Nature - Complete Springer Journals
subjects Aggregates
Amino acid composition
Amino acids
Crystallin
Doppler effect
Emission analysis
Fluorescence
Lactalbumin
Light scattering
Liquid chromatography
Molecular biology
Peptides
Photon correlation spectroscopy
Protein folding
Proteins
Red shift
Spectroscopy
Spectrum analysis
title Interaction of α-Lactalbumin with Mini-αA-Crystallin
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T20%3A54%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interaction%20of%20%CE%B1-Lactalbumin%20with%20Mini-%CE%B1A-Crystallin&rft.jtitle=Journal%20of%20Protein%20Chemistry&rft.au=Sreelakshmi,%20Y.&rft.date=2001-02-01&rft.volume=20&rft.issue=2&rft.spage=123&rft.epage=130&rft.pages=123-130&rft.issn=0277-8033&rft.eissn=1573-4943&rft_id=info:doi/10.1023/A:1011077307262&rft_dat=%3Cproquest_cross%3E2624125781%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=963537102&rft_id=info:pmid/&rfr_iscdi=true