Global variations of HDO and HDO/H2O ratios in the upper troposphere and lower stratosphere derived from ACE-FTS satellite measurements

High‐quality satellite observations of water and deuterated water in the upper troposphere and lower stratosphere (UTLS) from the Atmospheric Chemistry Experiment Fourier transform spectrometer (ACE‐FTS) are used to map global climatological behavior. Spatial and temporal variability in these data s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Geophysical Research: Atmospheres 2012-03, Vol.117 (D6), p.n/a
Hauptverfasser: Randel, William J., Moyer, Elisabeth, Park, Mijeong, Jensen, Eric, Bernath, Peter, Walker, Kaley, Boone, Chris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue D6
container_start_page
container_title Journal of Geophysical Research: Atmospheres
container_volume 117
creator Randel, William J.
Moyer, Elisabeth
Park, Mijeong
Jensen, Eric
Bernath, Peter
Walker, Kaley
Boone, Chris
description High‐quality satellite observations of water and deuterated water in the upper troposphere and lower stratosphere (UTLS) from the Atmospheric Chemistry Experiment Fourier transform spectrometer (ACE‐FTS) are used to map global climatological behavior. Spatial and temporal variability in these data suggest that convection plays a significant role in setting water vapor isotopic composition in these regions. In many instances, enhancements in HDO/H2O (i.e., δD) are closely tied to patterns of climatological deep convection and uncorrelated with water vapor, although convection appears to have different isotopic effects in different locations. The ACE‐FTS data reveal seasonal variations in the tropics and allow mapping of climatological regional structure. These data reveal strong regional isotopic enhancement associated with the North American summer monsoon but not the Asian monsoon or the western Pacific warm pool. We suggest that the isotopic effects of deep convection near the tropopause are moderated by the ambient relative humidity, which controls the amount of convective ice that evaporates. Local convective signals can in turn affect global behavior: the North America monsoon influence introduces a Northern Hemisphere–Southern Hemisphere asymmetry in water isotopic composition in the lower stratosphere that extends into the tropics and influences the apparent seasonal cycle in averaged tropical UTLS data. Seasonal variation in tropical lower stratospheric water isotopic composition extends up to ∼20 km in ACE retrievals, but in contrast to previous reports, there is no clear evidence of propagation beyond the lowermost stratosphere. The reliability of these observations is supported by the broad consistency of ACE‐FTS averaged tropical profiles with previous remote and in situ δD measurements. Key Points Novel global climatology of HDO from satellite measurements HDO isotopic ratios exhibit regional and seasonal variability Strong HDO enrichment linked to NA summer monsoon
doi_str_mv 10.1029/2011JD016632
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_journals_963437366</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2623422771</sourcerecordid><originalsourceid>FETCH-LOGICAL-i3981-1523bf5bb295ac8dbb0e122585f2e6fab6d20cc7e588c6a949c735949fdb1d4e3</originalsourceid><addsrcrecordid>eNpNkcFOGzEQhq2qlYhSbn0Aq1KPW-zx2rt7RAlJQJRUbYCj5d2dFaab9dZ2oDwBr43TUNS5_NL83z8jzRDyibOvnEF1AozziznjSgl4RybApcoAGLwnE8bzMmMAxRE5DuGepcqlyhmfkOdl72rT0wfjrYnWDYG6jq7ma2qGdq8nK1hTv7cCtQONd0h344ieRu9GF8Y79PiX7d1j6oaY2H_tFr19wJZ23m3p6ewsW2x-0mAi9r2NSLdows7jFocYPpIPnekDHr_qlFwvzjazVXa5Xp7PTi8zK6qSZ1yCqDtZ11BJ05RtXTPkALKUHaDqTK1aYE1ToCzLRpkqr5pCyCRdW_M2RzElnw9zR-9-7zBEfe92fkgrdaVELgqR7jclX14hExrTd94MjQ169HZr_JMGWRWiyFnixIF7tD0-vfmc6f1H9P8f0RfLH3NeyIKnVHZI2RDxz1vK-F9apblS314t9dW37xt5w0EvxAvWD47z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>963437366</pqid></control><display><type>article</type><title>Global variations of HDO and HDO/H2O ratios in the upper troposphere and lower stratosphere derived from ACE-FTS satellite measurements</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>Alma/SFX Local Collection</source><creator>Randel, William J. ; Moyer, Elisabeth ; Park, Mijeong ; Jensen, Eric ; Bernath, Peter ; Walker, Kaley ; Boone, Chris</creator><creatorcontrib>Randel, William J. ; Moyer, Elisabeth ; Park, Mijeong ; Jensen, Eric ; Bernath, Peter ; Walker, Kaley ; Boone, Chris</creatorcontrib><description>High‐quality satellite observations of water and deuterated water in the upper troposphere and lower stratosphere (UTLS) from the Atmospheric Chemistry Experiment Fourier transform spectrometer (ACE‐FTS) are used to map global climatological behavior. Spatial and temporal variability in these data suggest that convection plays a significant role in setting water vapor isotopic composition in these regions. In many instances, enhancements in HDO/H2O (i.e., δD) are closely tied to patterns of climatological deep convection and uncorrelated with water vapor, although convection appears to have different isotopic effects in different locations. The ACE‐FTS data reveal seasonal variations in the tropics and allow mapping of climatological regional structure. These data reveal strong regional isotopic enhancement associated with the North American summer monsoon but not the Asian monsoon or the western Pacific warm pool. We suggest that the isotopic effects of deep convection near the tropopause are moderated by the ambient relative humidity, which controls the amount of convective ice that evaporates. Local convective signals can in turn affect global behavior: the North America monsoon influence introduces a Northern Hemisphere–Southern Hemisphere asymmetry in water isotopic composition in the lower stratosphere that extends into the tropics and influences the apparent seasonal cycle in averaged tropical UTLS data. Seasonal variation in tropical lower stratospheric water isotopic composition extends up to ∼20 km in ACE retrievals, but in contrast to previous reports, there is no clear evidence of propagation beyond the lowermost stratosphere. The reliability of these observations is supported by the broad consistency of ACE‐FTS averaged tropical profiles with previous remote and in situ δD measurements. Key Points Novel global climatology of HDO from satellite measurements HDO isotopic ratios exhibit regional and seasonal variability Strong HDO enrichment linked to NA summer monsoon</description><identifier>ISSN: 0148-0227</identifier><identifier>ISSN: 2169-897X</identifier><identifier>EISSN: 2156-2202</identifier><identifier>EISSN: 2169-8996</identifier><identifier>DOI: 10.1029/2011JD016632</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Atmospheric chemistry ; Atmospheric sciences ; Convection ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Fourier transforms ; Geophysics ; Global climate ; Monsoons ; Relative humidity ; Seasonal variations ; Stratosphere ; Tropical environments ; Tropopause ; Troposphere ; UTLS ; water isotopes ; Water vapor</subject><ispartof>Journal of Geophysical Research: Atmospheres, 2012-03, Vol.117 (D6), p.n/a</ispartof><rights>Copyright 2012 by the American Geophysical Union</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2011JD016632$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2011JD016632$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,1428,11495,27905,27906,45555,45556,46390,46449,46814,46873</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25973740$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Randel, William J.</creatorcontrib><creatorcontrib>Moyer, Elisabeth</creatorcontrib><creatorcontrib>Park, Mijeong</creatorcontrib><creatorcontrib>Jensen, Eric</creatorcontrib><creatorcontrib>Bernath, Peter</creatorcontrib><creatorcontrib>Walker, Kaley</creatorcontrib><creatorcontrib>Boone, Chris</creatorcontrib><title>Global variations of HDO and HDO/H2O ratios in the upper troposphere and lower stratosphere derived from ACE-FTS satellite measurements</title><title>Journal of Geophysical Research: Atmospheres</title><addtitle>J. Geophys. Res</addtitle><description>High‐quality satellite observations of water and deuterated water in the upper troposphere and lower stratosphere (UTLS) from the Atmospheric Chemistry Experiment Fourier transform spectrometer (ACE‐FTS) are used to map global climatological behavior. Spatial and temporal variability in these data suggest that convection plays a significant role in setting water vapor isotopic composition in these regions. In many instances, enhancements in HDO/H2O (i.e., δD) are closely tied to patterns of climatological deep convection and uncorrelated with water vapor, although convection appears to have different isotopic effects in different locations. The ACE‐FTS data reveal seasonal variations in the tropics and allow mapping of climatological regional structure. These data reveal strong regional isotopic enhancement associated with the North American summer monsoon but not the Asian monsoon or the western Pacific warm pool. We suggest that the isotopic effects of deep convection near the tropopause are moderated by the ambient relative humidity, which controls the amount of convective ice that evaporates. Local convective signals can in turn affect global behavior: the North America monsoon influence introduces a Northern Hemisphere–Southern Hemisphere asymmetry in water isotopic composition in the lower stratosphere that extends into the tropics and influences the apparent seasonal cycle in averaged tropical UTLS data. Seasonal variation in tropical lower stratospheric water isotopic composition extends up to ∼20 km in ACE retrievals, but in contrast to previous reports, there is no clear evidence of propagation beyond the lowermost stratosphere. The reliability of these observations is supported by the broad consistency of ACE‐FTS averaged tropical profiles with previous remote and in situ δD measurements. Key Points Novel global climatology of HDO from satellite measurements HDO isotopic ratios exhibit regional and seasonal variability Strong HDO enrichment linked to NA summer monsoon</description><subject>Atmospheric chemistry</subject><subject>Atmospheric sciences</subject><subject>Convection</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Fourier transforms</subject><subject>Geophysics</subject><subject>Global climate</subject><subject>Monsoons</subject><subject>Relative humidity</subject><subject>Seasonal variations</subject><subject>Stratosphere</subject><subject>Tropical environments</subject><subject>Tropopause</subject><subject>Troposphere</subject><subject>UTLS</subject><subject>water isotopes</subject><subject>Water vapor</subject><issn>0148-0227</issn><issn>2169-897X</issn><issn>2156-2202</issn><issn>2169-8996</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpNkcFOGzEQhq2qlYhSbn0Aq1KPW-zx2rt7RAlJQJRUbYCj5d2dFaab9dZ2oDwBr43TUNS5_NL83z8jzRDyibOvnEF1AozziznjSgl4RybApcoAGLwnE8bzMmMAxRE5DuGepcqlyhmfkOdl72rT0wfjrYnWDYG6jq7ma2qGdq8nK1hTv7cCtQONd0h344ieRu9GF8Y79PiX7d1j6oaY2H_tFr19wJZ23m3p6ewsW2x-0mAi9r2NSLdows7jFocYPpIPnekDHr_qlFwvzjazVXa5Xp7PTi8zK6qSZ1yCqDtZ11BJ05RtXTPkALKUHaDqTK1aYE1ToCzLRpkqr5pCyCRdW_M2RzElnw9zR-9-7zBEfe92fkgrdaVELgqR7jclX14hExrTd94MjQ169HZr_JMGWRWiyFnixIF7tD0-vfmc6f1H9P8f0RfLH3NeyIKnVHZI2RDxz1vK-F9apblS314t9dW37xt5w0EvxAvWD47z</recordid><startdate>20120327</startdate><enddate>20120327</enddate><creator>Randel, William J.</creator><creator>Moyer, Elisabeth</creator><creator>Park, Mijeong</creator><creator>Jensen, Eric</creator><creator>Bernath, Peter</creator><creator>Walker, Kaley</creator><creator>Boone, Chris</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>3V.</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20120327</creationdate><title>Global variations of HDO and HDO/H2O ratios in the upper troposphere and lower stratosphere derived from ACE-FTS satellite measurements</title><author>Randel, William J. ; Moyer, Elisabeth ; Park, Mijeong ; Jensen, Eric ; Bernath, Peter ; Walker, Kaley ; Boone, Chris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i3981-1523bf5bb295ac8dbb0e122585f2e6fab6d20cc7e588c6a949c735949fdb1d4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Atmospheric chemistry</topic><topic>Atmospheric sciences</topic><topic>Convection</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Fourier transforms</topic><topic>Geophysics</topic><topic>Global climate</topic><topic>Monsoons</topic><topic>Relative humidity</topic><topic>Seasonal variations</topic><topic>Stratosphere</topic><topic>Tropical environments</topic><topic>Tropopause</topic><topic>Troposphere</topic><topic>UTLS</topic><topic>water isotopes</topic><topic>Water vapor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Randel, William J.</creatorcontrib><creatorcontrib>Moyer, Elisabeth</creatorcontrib><creatorcontrib>Park, Mijeong</creatorcontrib><creatorcontrib>Jensen, Eric</creatorcontrib><creatorcontrib>Bernath, Peter</creatorcontrib><creatorcontrib>Walker, Kaley</creatorcontrib><creatorcontrib>Boone, Chris</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of Geophysical Research: Atmospheres</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Randel, William J.</au><au>Moyer, Elisabeth</au><au>Park, Mijeong</au><au>Jensen, Eric</au><au>Bernath, Peter</au><au>Walker, Kaley</au><au>Boone, Chris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global variations of HDO and HDO/H2O ratios in the upper troposphere and lower stratosphere derived from ACE-FTS satellite measurements</atitle><jtitle>Journal of Geophysical Research: Atmospheres</jtitle><addtitle>J. Geophys. Res</addtitle><date>2012-03-27</date><risdate>2012</risdate><volume>117</volume><issue>D6</issue><epage>n/a</epage><issn>0148-0227</issn><issn>2169-897X</issn><eissn>2156-2202</eissn><eissn>2169-8996</eissn><abstract>High‐quality satellite observations of water and deuterated water in the upper troposphere and lower stratosphere (UTLS) from the Atmospheric Chemistry Experiment Fourier transform spectrometer (ACE‐FTS) are used to map global climatological behavior. Spatial and temporal variability in these data suggest that convection plays a significant role in setting water vapor isotopic composition in these regions. In many instances, enhancements in HDO/H2O (i.e., δD) are closely tied to patterns of climatological deep convection and uncorrelated with water vapor, although convection appears to have different isotopic effects in different locations. The ACE‐FTS data reveal seasonal variations in the tropics and allow mapping of climatological regional structure. These data reveal strong regional isotopic enhancement associated with the North American summer monsoon but not the Asian monsoon or the western Pacific warm pool. We suggest that the isotopic effects of deep convection near the tropopause are moderated by the ambient relative humidity, which controls the amount of convective ice that evaporates. Local convective signals can in turn affect global behavior: the North America monsoon influence introduces a Northern Hemisphere–Southern Hemisphere asymmetry in water isotopic composition in the lower stratosphere that extends into the tropics and influences the apparent seasonal cycle in averaged tropical UTLS data. Seasonal variation in tropical lower stratospheric water isotopic composition extends up to ∼20 km in ACE retrievals, but in contrast to previous reports, there is no clear evidence of propagation beyond the lowermost stratosphere. The reliability of these observations is supported by the broad consistency of ACE‐FTS averaged tropical profiles with previous remote and in situ δD measurements. Key Points Novel global climatology of HDO from satellite measurements HDO isotopic ratios exhibit regional and seasonal variability Strong HDO enrichment linked to NA summer monsoon</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2011JD016632</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0148-0227
ispartof Journal of Geophysical Research: Atmospheres, 2012-03, Vol.117 (D6), p.n/a
issn 0148-0227
2169-897X
2156-2202
2169-8996
language eng
recordid cdi_proquest_journals_963437366
source Wiley Online Library Journals Frontfile Complete; Wiley Free Content; Wiley-Blackwell AGU Digital Library; Alma/SFX Local Collection
subjects Atmospheric chemistry
Atmospheric sciences
Convection
Earth sciences
Earth, ocean, space
Exact sciences and technology
Fourier transforms
Geophysics
Global climate
Monsoons
Relative humidity
Seasonal variations
Stratosphere
Tropical environments
Tropopause
Troposphere
UTLS
water isotopes
Water vapor
title Global variations of HDO and HDO/H2O ratios in the upper troposphere and lower stratosphere derived from ACE-FTS satellite measurements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T00%3A27%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20variations%20of%20HDO%20and%20HDO/H2O%20ratios%20in%20the%20upper%20troposphere%20and%20lower%20stratosphere%20derived%20from%20ACE-FTS%20satellite%20measurements&rft.jtitle=Journal%20of%20Geophysical%20Research:%20Atmospheres&rft.au=Randel,%20William%20J.&rft.date=2012-03-27&rft.volume=117&rft.issue=D6&rft.epage=n/a&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2011JD016632&rft_dat=%3Cproquest_pasca%3E2623422771%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=963437366&rft_id=info:pmid/&rfr_iscdi=true