Resonances and Twist in Volume-Preserving Mappings
The phase space of an integrable, volume-preserving map with one action and $d$ angles is foliated by a one-parameter family of $d$-dimensional invariant tori. Perturbations of such a system may lead to chaotic dynamics and transport. We show that near a rank-one, resonant torus these mappings can b...
Gespeichert in:
Veröffentlicht in: | SIAM journal on applied dynamical systems 2012-01, Vol.11 (1), p.319-349 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The phase space of an integrable, volume-preserving map with one action and $d$ angles is foliated by a one-parameter family of $d$-dimensional invariant tori. Perturbations of such a system may lead to chaotic dynamics and transport. We show that near a rank-one, resonant torus these mappings can be reduced to volume-preserving "standard maps." These have twist only when the image of the frequency map crosses the resonance curve transversely. We show that these maps can be approximated--using averaging theory--by the usual area-preserving twist or nontwist standard maps. The twist condition appropriate for the volume-preserving setting is shown to be distinct from the nondegeneracy condition used in (volume-preserving) KAM theory. |
---|---|
ISSN: | 1536-0040 1536-0040 |
DOI: | 10.1137/110846865 |