Resonances and Twist in Volume-Preserving Mappings

The phase space of an integrable, volume-preserving map with one action and $d$ angles is foliated by a one-parameter family of $d$-dimensional invariant tori. Perturbations of such a system may lead to chaotic dynamics and transport. We show that near a rank-one, resonant torus these mappings can b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on applied dynamical systems 2012-01, Vol.11 (1), p.319-349
Hauptverfasser: Dullin, H. R., Meiss, J. D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The phase space of an integrable, volume-preserving map with one action and $d$ angles is foliated by a one-parameter family of $d$-dimensional invariant tori. Perturbations of such a system may lead to chaotic dynamics and transport. We show that near a rank-one, resonant torus these mappings can be reduced to volume-preserving "standard maps." These have twist only when the image of the frequency map crosses the resonance curve transversely. We show that these maps can be approximated--using averaging theory--by the usual area-preserving twist or nontwist standard maps. The twist condition appropriate for the volume-preserving setting is shown to be distinct from the nondegeneracy condition used in (volume-preserving) KAM theory.
ISSN:1536-0040
1536-0040
DOI:10.1137/110846865