Optimal Portfolios of Mean-Reverting Instruments

In this paper we investigate portfolios consisting of instruments whose logarithms are mean-reverting. Under the assumption that portfolios are constant, we derive analytic expressions for the expected wealth and the quantile-based risk measure capital at risk. Assuming that short-selling and borrow...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on financial mathematics 2011-01, Vol.2 (1), p.748-767
Hauptverfasser: Dmitrašinović-Vidović, Gordana, Ware, Antony
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 767
container_issue 1
container_start_page 748
container_title SIAM journal on financial mathematics
container_volume 2
creator Dmitrašinović-Vidović, Gordana
Ware, Antony
description In this paper we investigate portfolios consisting of instruments whose logarithms are mean-reverting. Under the assumption that portfolios are constant, we derive analytic expressions for the expected wealth and the quantile-based risk measure capital at risk. Assuming that short-selling and borrowing are allowed, we then solve the problems of global minimum capital at risk and the problem of finding maximal wealth subject to constrained capital at risk. We illustrate these results with some numerical examples that show the strong effect of the mean-reversion rates on the portfolio choice.
doi_str_mv 10.1137/100787714
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_928467198</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2611423611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c256t-8cc4dbcec7dc6b42a7cd04f019d947a99f207980074a194c70f00e4c8d020bdb3</originalsourceid><addsrcrecordid>eNpNkM1LxDAQxYMouKx78D8o3jxUJ-lskxxl8WNhZUUUvIU0H9Kl29QkFfzvrayIc5k5_Hjz3iPknMIVpRW_pgBccE7xiMyoxGWJkr8d_7tPySKlHUxTUWQIMwLbIbd73RVPIWYfujakIvji0em-fHafLua2fy_Wfcpx3Ls-pzNy4nWX3OJ3z8nr3e3L6qHcbO_Xq5tNadiyzqUwBm1jnOHW1A0yzY0F9ECllci1lJ4Bl2IyjHqyZzh4AIdGWGDQ2Kaak4uD7hDDx-hSVrswxn56qSQTWHMqxQRdHiATQ0rReTXEKU38UhTUTyXqr5LqGwHSUe0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>928467198</pqid></control><display><type>article</type><title>Optimal Portfolios of Mean-Reverting Instruments</title><source>SIAM Journals Online</source><creator>Dmitrašinović-Vidović, Gordana ; Ware, Antony</creator><creatorcontrib>Dmitrašinović-Vidović, Gordana ; Ware, Antony</creatorcontrib><description>In this paper we investigate portfolios consisting of instruments whose logarithms are mean-reverting. Under the assumption that portfolios are constant, we derive analytic expressions for the expected wealth and the quantile-based risk measure capital at risk. Assuming that short-selling and borrowing are allowed, we then solve the problems of global minimum capital at risk and the problem of finding maximal wealth subject to constrained capital at risk. We illustrate these results with some numerical examples that show the strong effect of the mean-reversion rates on the portfolio choice.</description><identifier>ISSN: 1945-497X</identifier><identifier>EISSN: 1945-497X</identifier><identifier>DOI: 10.1137/100787714</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Applied mathematics ; Borrowing ; Expected values ; Interest rates ; Investigations ; Laboratories ; Optimization ; Portfolio performance ; Random variables ; Short sales ; Utility functions</subject><ispartof>SIAM journal on financial mathematics, 2011-01, Vol.2 (1), p.748-767</ispartof><rights>[Copyright] © 2011 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c256t-8cc4dbcec7dc6b42a7cd04f019d947a99f207980074a194c70f00e4c8d020bdb3</citedby><cites>FETCH-LOGICAL-c256t-8cc4dbcec7dc6b42a7cd04f019d947a99f207980074a194c70f00e4c8d020bdb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3170,27903,27904</link.rule.ids></links><search><creatorcontrib>Dmitrašinović-Vidović, Gordana</creatorcontrib><creatorcontrib>Ware, Antony</creatorcontrib><title>Optimal Portfolios of Mean-Reverting Instruments</title><title>SIAM journal on financial mathematics</title><description>In this paper we investigate portfolios consisting of instruments whose logarithms are mean-reverting. Under the assumption that portfolios are constant, we derive analytic expressions for the expected wealth and the quantile-based risk measure capital at risk. Assuming that short-selling and borrowing are allowed, we then solve the problems of global minimum capital at risk and the problem of finding maximal wealth subject to constrained capital at risk. We illustrate these results with some numerical examples that show the strong effect of the mean-reversion rates on the portfolio choice.</description><subject>Applied mathematics</subject><subject>Borrowing</subject><subject>Expected values</subject><subject>Interest rates</subject><subject>Investigations</subject><subject>Laboratories</subject><subject>Optimization</subject><subject>Portfolio performance</subject><subject>Random variables</subject><subject>Short sales</subject><subject>Utility functions</subject><issn>1945-497X</issn><issn>1945-497X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpNkM1LxDAQxYMouKx78D8o3jxUJ-lskxxl8WNhZUUUvIU0H9Kl29QkFfzvrayIc5k5_Hjz3iPknMIVpRW_pgBccE7xiMyoxGWJkr8d_7tPySKlHUxTUWQIMwLbIbd73RVPIWYfujakIvji0em-fHafLua2fy_Wfcpx3Ls-pzNy4nWX3OJ3z8nr3e3L6qHcbO_Xq5tNadiyzqUwBm1jnOHW1A0yzY0F9ECllci1lJ4Bl2IyjHqyZzh4AIdGWGDQ2Kaak4uD7hDDx-hSVrswxn56qSQTWHMqxQRdHiATQ0rReTXEKU38UhTUTyXqr5LqGwHSUe0</recordid><startdate>201101</startdate><enddate>201101</enddate><creator>Dmitrašinović-Vidović, Gordana</creator><creator>Ware, Antony</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X1</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8A9</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ANIOZ</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRAZJ</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>201101</creationdate><title>Optimal Portfolios of Mean-Reverting Instruments</title><author>Dmitrašinović-Vidović, Gordana ; Ware, Antony</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c256t-8cc4dbcec7dc6b42a7cd04f019d947a99f207980074a194c70f00e4c8d020bdb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied mathematics</topic><topic>Borrowing</topic><topic>Expected values</topic><topic>Interest rates</topic><topic>Investigations</topic><topic>Laboratories</topic><topic>Optimization</topic><topic>Portfolio performance</topic><topic>Random variables</topic><topic>Short sales</topic><topic>Utility functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dmitrašinović-Vidović, Gordana</creatorcontrib><creatorcontrib>Ware, Antony</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Accounting &amp; Tax Database</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Accounting &amp; Tax Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Accounting, Tax &amp; Banking Collection</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Accounting, Tax &amp; Banking Collection (Alumni)</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on financial mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dmitrašinović-Vidović, Gordana</au><au>Ware, Antony</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Portfolios of Mean-Reverting Instruments</atitle><jtitle>SIAM journal on financial mathematics</jtitle><date>2011-01</date><risdate>2011</risdate><volume>2</volume><issue>1</issue><spage>748</spage><epage>767</epage><pages>748-767</pages><issn>1945-497X</issn><eissn>1945-497X</eissn><abstract>In this paper we investigate portfolios consisting of instruments whose logarithms are mean-reverting. Under the assumption that portfolios are constant, we derive analytic expressions for the expected wealth and the quantile-based risk measure capital at risk. Assuming that short-selling and borrowing are allowed, we then solve the problems of global minimum capital at risk and the problem of finding maximal wealth subject to constrained capital at risk. We illustrate these results with some numerical examples that show the strong effect of the mean-reversion rates on the portfolio choice.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/100787714</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1945-497X
ispartof SIAM journal on financial mathematics, 2011-01, Vol.2 (1), p.748-767
issn 1945-497X
1945-497X
language eng
recordid cdi_proquest_journals_928467198
source SIAM Journals Online
subjects Applied mathematics
Borrowing
Expected values
Interest rates
Investigations
Laboratories
Optimization
Portfolio performance
Random variables
Short sales
Utility functions
title Optimal Portfolios of Mean-Reverting Instruments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T11%3A55%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Portfolios%20of%20Mean-Reverting%20Instruments&rft.jtitle=SIAM%20journal%20on%20financial%20mathematics&rft.au=Dmitra%C5%A1inovi%C4%87-Vidovi%C4%87,%20Gordana&rft.date=2011-01&rft.volume=2&rft.issue=1&rft.spage=748&rft.epage=767&rft.pages=748-767&rft.issn=1945-497X&rft.eissn=1945-497X&rft_id=info:doi/10.1137/100787714&rft_dat=%3Cproquest_cross%3E2611423611%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=928467198&rft_id=info:pmid/&rfr_iscdi=true