Modelling the distribution of the cluster maxima of exceedances of subasymptotic thresholds

A standard approach to model the extreme values of a stationary process is the peaks over threshold method, which consists of imposing a high threshold, identifying clusters of exceedances of this threshold and fitting the maximum value from each cluster using the generalized Pareto distribution. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrika 2012-03, Vol.99 (1), p.43-55
Hauptverfasser: EASTOE, EMMA F., TAWN, JONATHAN A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 55
container_issue 1
container_start_page 43
container_title Biometrika
container_volume 99
creator EASTOE, EMMA F.
TAWN, JONATHAN A.
description A standard approach to model the extreme values of a stationary process is the peaks over threshold method, which consists of imposing a high threshold, identifying clusters of exceedances of this threshold and fitting the maximum value from each cluster using the generalized Pareto distribution. This approach is strongly justified by underlying asymptotic theory. We propose an alternative model for the distribution of the cluster maxima that accounts for the subasymptotic theory of extremes of a stationary process. This new distribution is a product of two terms, one for the marginal distribution of exceedances and the other for the dependence structure of the exceedance values within a cluster. We illustrate the improvement in fit, measured by the root mean square error of the estimated quantités, offered by the new distribution over the peaks over thresholds analysis using simulated and hydrological data, and we suggest a diagnostic tool to help identify when the proposed model is likely to lead to an improved fit.
doi_str_mv 10.1093/biomet/asr078
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_927125700</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41720671</jstor_id><sourcerecordid>41720671</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-dc7667f4c24ab7d1203ae4f1f51df2d583540469c073423a1878d6fab08e3db93</originalsourceid><addsrcrecordid>eNo9kEtr3DAUhUVJoZM0yywLQyFLN3rLXoaQRyGlm2aVhZD16GiwR46uXDL_Ppp6mMXR5V59OpIOQlcE_yC4Yzd9TKMvNwYyVu0ntCJc8oYJgs_QCmMsG8Y5_4LOAbaHVgq5Qq-_kvPDEHd_12Xj1y5CybGfS0y7dQr_Z3aYofi8Hs17HM1h6t-t987srIdDC3NvYD9OJZVo65HsYZMGB1_R52AG8JfHeoFeHu7_3D01z78ff97dPjeWtaQ0ziopVeCWctMrRyhmxvNAgiAuUCdaJjjmsrNYMU6ZIa1qnQymx61nru_YBfq--E45vc0eit6mOe_qlbqjilChMK5Qs0A2J4Dsg55y_U7ea4L1IT69xKeX-Cr_tPDZT96e4DRPR-6fZqbr6rKvopjQWmIVqZqqONNC6E0Zq9X18X0GrBlCrslFOFlSIdqOtqRy3xZuCyXl0z4nimKpCPsAAAOVyA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>927125700</pqid></control><display><type>article</type><title>Modelling the distribution of the cluster maxima of exceedances of subasymptotic thresholds</title><source>RePEc</source><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Alma/SFX Local Collection</source><creator>EASTOE, EMMA F. ; TAWN, JONATHAN A.</creator><creatorcontrib>EASTOE, EMMA F. ; TAWN, JONATHAN A.</creatorcontrib><description>A standard approach to model the extreme values of a stationary process is the peaks over threshold method, which consists of imposing a high threshold, identifying clusters of exceedances of this threshold and fitting the maximum value from each cluster using the generalized Pareto distribution. This approach is strongly justified by underlying asymptotic theory. We propose an alternative model for the distribution of the cluster maxima that accounts for the subasymptotic theory of extremes of a stationary process. This new distribution is a product of two terms, one for the marginal distribution of exceedances and the other for the dependence structure of the exceedance values within a cluster. We illustrate the improvement in fit, measured by the root mean square error of the estimated quantités, offered by the new distribution over the peaks over thresholds analysis using simulated and hydrological data, and we suggest a diagnostic tool to help identify when the proposed model is likely to lead to an improved fit.</description><identifier>ISSN: 0006-3444</identifier><identifier>EISSN: 1464-3510</identifier><identifier>DOI: 10.1093/biomet/asr078</identifier><identifier>CODEN: BIOKAX</identifier><language>eng</language><publisher>Oxford: Biometrika Trust, University College London</publisher><subject>Applications ; Approximation ; Asymptotic methods ; Biology, psychology, social sciences ; Confidence interval ; Distribution theory ; Estimation bias ; Estimation methods ; Exact sciences and technology ; General topics ; Inference ; Mathematical maxima ; Mathematical models ; Mathematics ; Modeling ; Parametric models ; Pareto optimum ; Probability and statistics ; Probability distribution ; Probability theory and stochastic processes ; Reliability functions ; Sciences and techniques of general use ; Statistical models ; Statistics ; Stochastic processes ; Studies</subject><ispartof>Biometrika, 2012-03, Vol.99 (1), p.43-55</ispartof><rights>2012 Biometrika Trust</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Oxford Publishing Limited(England) Mar 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-dc7667f4c24ab7d1203ae4f1f51df2d583540469c073423a1878d6fab08e3db93</citedby><cites>FETCH-LOGICAL-c381t-dc7667f4c24ab7d1203ae4f1f51df2d583540469c073423a1878d6fab08e3db93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41720671$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41720671$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,3993,27903,27904,57996,58000,58229,58233</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25589281$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/oupbiomet/v_3a99_3ay_3a2012_3ai_3a1_3ap_3a43-55.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>EASTOE, EMMA F.</creatorcontrib><creatorcontrib>TAWN, JONATHAN A.</creatorcontrib><title>Modelling the distribution of the cluster maxima of exceedances of subasymptotic thresholds</title><title>Biometrika</title><description>A standard approach to model the extreme values of a stationary process is the peaks over threshold method, which consists of imposing a high threshold, identifying clusters of exceedances of this threshold and fitting the maximum value from each cluster using the generalized Pareto distribution. This approach is strongly justified by underlying asymptotic theory. We propose an alternative model for the distribution of the cluster maxima that accounts for the subasymptotic theory of extremes of a stationary process. This new distribution is a product of two terms, one for the marginal distribution of exceedances and the other for the dependence structure of the exceedance values within a cluster. We illustrate the improvement in fit, measured by the root mean square error of the estimated quantités, offered by the new distribution over the peaks over thresholds analysis using simulated and hydrological data, and we suggest a diagnostic tool to help identify when the proposed model is likely to lead to an improved fit.</description><subject>Applications</subject><subject>Approximation</subject><subject>Asymptotic methods</subject><subject>Biology, psychology, social sciences</subject><subject>Confidence interval</subject><subject>Distribution theory</subject><subject>Estimation bias</subject><subject>Estimation methods</subject><subject>Exact sciences and technology</subject><subject>General topics</subject><subject>Inference</subject><subject>Mathematical maxima</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Modeling</subject><subject>Parametric models</subject><subject>Pareto optimum</subject><subject>Probability and statistics</subject><subject>Probability distribution</subject><subject>Probability theory and stochastic processes</subject><subject>Reliability functions</subject><subject>Sciences and techniques of general use</subject><subject>Statistical models</subject><subject>Statistics</subject><subject>Stochastic processes</subject><subject>Studies</subject><issn>0006-3444</issn><issn>1464-3510</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNo9kEtr3DAUhUVJoZM0yywLQyFLN3rLXoaQRyGlm2aVhZD16GiwR46uXDL_Ppp6mMXR5V59OpIOQlcE_yC4Yzd9TKMvNwYyVu0ntCJc8oYJgs_QCmMsG8Y5_4LOAbaHVgq5Qq-_kvPDEHd_12Xj1y5CybGfS0y7dQr_Z3aYofi8Hs17HM1h6t-t987srIdDC3NvYD9OJZVo65HsYZMGB1_R52AG8JfHeoFeHu7_3D01z78ff97dPjeWtaQ0ziopVeCWctMrRyhmxvNAgiAuUCdaJjjmsrNYMU6ZIa1qnQymx61nru_YBfq--E45vc0eit6mOe_qlbqjilChMK5Qs0A2J4Dsg55y_U7ea4L1IT69xKeX-Cr_tPDZT96e4DRPR-6fZqbr6rKvopjQWmIVqZqqONNC6E0Zq9X18X0GrBlCrslFOFlSIdqOtqRy3xZuCyXl0z4nimKpCPsAAAOVyA</recordid><startdate>20120301</startdate><enddate>20120301</enddate><creator>EASTOE, EMMA F.</creator><creator>TAWN, JONATHAN A.</creator><general>Biometrika Trust, University College London</general><general>Oxford University Press</general><general>Oxford University Press for Biometrika Trust</general><general>Oxford Publishing Limited (England)</general><scope>IQODW</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20120301</creationdate><title>Modelling the distribution of the cluster maxima of exceedances of subasymptotic thresholds</title><author>EASTOE, EMMA F. ; TAWN, JONATHAN A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-dc7667f4c24ab7d1203ae4f1f51df2d583540469c073423a1878d6fab08e3db93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applications</topic><topic>Approximation</topic><topic>Asymptotic methods</topic><topic>Biology, psychology, social sciences</topic><topic>Confidence interval</topic><topic>Distribution theory</topic><topic>Estimation bias</topic><topic>Estimation methods</topic><topic>Exact sciences and technology</topic><topic>General topics</topic><topic>Inference</topic><topic>Mathematical maxima</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Modeling</topic><topic>Parametric models</topic><topic>Pareto optimum</topic><topic>Probability and statistics</topic><topic>Probability distribution</topic><topic>Probability theory and stochastic processes</topic><topic>Reliability functions</topic><topic>Sciences and techniques of general use</topic><topic>Statistical models</topic><topic>Statistics</topic><topic>Stochastic processes</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>EASTOE, EMMA F.</creatorcontrib><creatorcontrib>TAWN, JONATHAN A.</creatorcontrib><collection>Pascal-Francis</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biometrika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>EASTOE, EMMA F.</au><au>TAWN, JONATHAN A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling the distribution of the cluster maxima of exceedances of subasymptotic thresholds</atitle><jtitle>Biometrika</jtitle><date>2012-03-01</date><risdate>2012</risdate><volume>99</volume><issue>1</issue><spage>43</spage><epage>55</epage><pages>43-55</pages><issn>0006-3444</issn><eissn>1464-3510</eissn><coden>BIOKAX</coden><abstract>A standard approach to model the extreme values of a stationary process is the peaks over threshold method, which consists of imposing a high threshold, identifying clusters of exceedances of this threshold and fitting the maximum value from each cluster using the generalized Pareto distribution. This approach is strongly justified by underlying asymptotic theory. We propose an alternative model for the distribution of the cluster maxima that accounts for the subasymptotic theory of extremes of a stationary process. This new distribution is a product of two terms, one for the marginal distribution of exceedances and the other for the dependence structure of the exceedance values within a cluster. We illustrate the improvement in fit, measured by the root mean square error of the estimated quantités, offered by the new distribution over the peaks over thresholds analysis using simulated and hydrological data, and we suggest a diagnostic tool to help identify when the proposed model is likely to lead to an improved fit.</abstract><cop>Oxford</cop><pub>Biometrika Trust, University College London</pub><doi>10.1093/biomet/asr078</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-3444
ispartof Biometrika, 2012-03, Vol.99 (1), p.43-55
issn 0006-3444
1464-3510
language eng
recordid cdi_proquest_journals_927125700
source RePEc; JSTOR Mathematics & Statistics; Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current); Alma/SFX Local Collection
subjects Applications
Approximation
Asymptotic methods
Biology, psychology, social sciences
Confidence interval
Distribution theory
Estimation bias
Estimation methods
Exact sciences and technology
General topics
Inference
Mathematical maxima
Mathematical models
Mathematics
Modeling
Parametric models
Pareto optimum
Probability and statistics
Probability distribution
Probability theory and stochastic processes
Reliability functions
Sciences and techniques of general use
Statistical models
Statistics
Stochastic processes
Studies
title Modelling the distribution of the cluster maxima of exceedances of subasymptotic thresholds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T01%3A34%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20the%20distribution%20of%20the%20cluster%20maxima%20of%20exceedances%20of%20subasymptotic%20thresholds&rft.jtitle=Biometrika&rft.au=EASTOE,%20EMMA%20F.&rft.date=2012-03-01&rft.volume=99&rft.issue=1&rft.spage=43&rft.epage=55&rft.pages=43-55&rft.issn=0006-3444&rft.eissn=1464-3510&rft.coden=BIOKAX&rft_id=info:doi/10.1093/biomet/asr078&rft_dat=%3Cjstor_proqu%3E41720671%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=927125700&rft_id=info:pmid/&rft_jstor_id=41720671&rfr_iscdi=true