Modified Neighborhood Similar Pixel Interpolator Approach for Removing Thick Clouds in Landsat Images

Thick cloud contaminations in Landsat images limit their regular usage for land applications. Based on the assumption that the neighboring spectral-similar pixels outside cloudy patches have similar temporal change patterns to the cloudy pixels, this paper presents an improved neighborhood similar p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2012-05, Vol.9 (3), p.521-525
Hauptverfasser: Zhu, Xiaolin, Gao, Feng, Liu, Desheng, Chen, Jin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 525
container_issue 3
container_start_page 521
container_title IEEE geoscience and remote sensing letters
container_volume 9
creator Zhu, Xiaolin
Gao, Feng
Liu, Desheng
Chen, Jin
description Thick cloud contaminations in Landsat images limit their regular usage for land applications. Based on the assumption that the neighboring spectral-similar pixels outside cloudy patches have similar temporal change patterns to the cloudy pixels, this paper presents an improved neighborhood similar pixel interpolator (NSPI) approach to build a cloud-free imagery. NSPI approach was originally developed and tested for filling gaps due to the Landsat ETM+ Scan Line Corrector (SLC)-off problem. Both simulated and real cloudy images were used to evaluate the performance of the proposed method. The results show that NSPI approach can restore the reflectance of cloud-contaminated images with fewer artifact edge effects comparing to a contextual multiple linear prediction (CMLP) method. The reflectance restored by NSPI approach is more accurate especially when the cloud-free auxiliary image and cloudy image are acquired from different seasons and have different spectral characteristics.
doi_str_mv 10.1109/LGRS.2011.2173290
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_926498450</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6095313</ieee_id><sourcerecordid>968182169</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-6d0b1622a9e7fd680c9ec8c4a5d9aae4631543743ee0714cd9420f81ac60d1343</originalsourceid><addsrcrecordid>eNqFkU9vEzEQxVcIJErhAyAOWFzgsmHG9nrtYxVBiRT-qGklbpa7nk1cdtfB3iD49jhKxYEDnGZG83ujN3pV9RxhgQjm7fryarPggLjg2Apu4EF1hk2ja2hafHjsZVM3Rn99XD3J-Q6AS63bs4o-Rh_6QJ59orDd3ca0i9GzTRjD4BL7En7SwFbTTGkfBzfHxC72-xRdt2N9Ga5ojD_CtGXXu9B9Y8shHnxmYWJrN_nsZrYa3Zby0-pR74ZMz-7reXXz_t318kO9_ny5Wl6s606inGvl4RYV585Q23uloTPU6U66xhvnSCpR3hCtFETQouy8kRx6ja5T4FFIcV69Pt0tFr8fKM92DLmjYXATxUO2RmnUHJUp5Jt_kti2IJRC0_wfVUoorkHqgr76C72LhzSVl63hShotGygQnqAuxZwT9XafwujSL4tgj2HaY5j2GKa9D7NoXpw0gYj-8AqKPRRl-_K07V20bptCtjebom8AQHHBufgNlRCi0A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>926498450</pqid></control><display><type>article</type><title>Modified Neighborhood Similar Pixel Interpolator Approach for Removing Thick Clouds in Landsat Images</title><source>IEEE Xplore (Online service)</source><creator>Zhu, Xiaolin ; Gao, Feng ; Liu, Desheng ; Chen, Jin</creator><creatorcontrib>Zhu, Xiaolin ; Gao, Feng ; Liu, Desheng ; Chen, Jin</creatorcontrib><description>Thick cloud contaminations in Landsat images limit their regular usage for land applications. Based on the assumption that the neighboring spectral-similar pixels outside cloudy patches have similar temporal change patterns to the cloudy pixels, this paper presents an improved neighborhood similar pixel interpolator (NSPI) approach to build a cloud-free imagery. NSPI approach was originally developed and tested for filling gaps due to the Landsat ETM+ Scan Line Corrector (SLC)-off problem. Both simulated and real cloudy images were used to evaluate the performance of the proposed method. The results show that NSPI approach can restore the reflectance of cloud-contaminated images with fewer artifact edge effects comparing to a contextual multiple linear prediction (CMLP) method. The reflectance restored by NSPI approach is more accurate especially when the cloud-free auxiliary image and cloudy image are acquired from different seasons and have different spectral characteristics.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2011.2173290</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>cloud cover ; Cloud removal ; Clouds ; Earth ; image analysis ; Image edge detection ; image processing ; Image restoration ; Land surface ; Landsat ; Linear prediction ; Pixels ; prediction ; reflectance ; Reflectivity ; Remote sensing ; Satellites ; Simulation ; Spectra ; spectral analysis ; temporal variation ; Utilities</subject><ispartof>IEEE geoscience and remote sensing letters, 2012-05, Vol.9 (3), p.521-525</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-6d0b1622a9e7fd680c9ec8c4a5d9aae4631543743ee0714cd9420f81ac60d1343</citedby><cites>FETCH-LOGICAL-c414t-6d0b1622a9e7fd680c9ec8c4a5d9aae4631543743ee0714cd9420f81ac60d1343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6095313$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6095313$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhu, Xiaolin</creatorcontrib><creatorcontrib>Gao, Feng</creatorcontrib><creatorcontrib>Liu, Desheng</creatorcontrib><creatorcontrib>Chen, Jin</creatorcontrib><title>Modified Neighborhood Similar Pixel Interpolator Approach for Removing Thick Clouds in Landsat Images</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Thick cloud contaminations in Landsat images limit their regular usage for land applications. Based on the assumption that the neighboring spectral-similar pixels outside cloudy patches have similar temporal change patterns to the cloudy pixels, this paper presents an improved neighborhood similar pixel interpolator (NSPI) approach to build a cloud-free imagery. NSPI approach was originally developed and tested for filling gaps due to the Landsat ETM+ Scan Line Corrector (SLC)-off problem. Both simulated and real cloudy images were used to evaluate the performance of the proposed method. The results show that NSPI approach can restore the reflectance of cloud-contaminated images with fewer artifact edge effects comparing to a contextual multiple linear prediction (CMLP) method. The reflectance restored by NSPI approach is more accurate especially when the cloud-free auxiliary image and cloudy image are acquired from different seasons and have different spectral characteristics.</description><subject>cloud cover</subject><subject>Cloud removal</subject><subject>Clouds</subject><subject>Earth</subject><subject>image analysis</subject><subject>Image edge detection</subject><subject>image processing</subject><subject>Image restoration</subject><subject>Land surface</subject><subject>Landsat</subject><subject>Linear prediction</subject><subject>Pixels</subject><subject>prediction</subject><subject>reflectance</subject><subject>Reflectivity</subject><subject>Remote sensing</subject><subject>Satellites</subject><subject>Simulation</subject><subject>Spectra</subject><subject>spectral analysis</subject><subject>temporal variation</subject><subject>Utilities</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkU9vEzEQxVcIJErhAyAOWFzgsmHG9nrtYxVBiRT-qGklbpa7nk1cdtfB3iD49jhKxYEDnGZG83ujN3pV9RxhgQjm7fryarPggLjg2Apu4EF1hk2ja2hafHjsZVM3Rn99XD3J-Q6AS63bs4o-Rh_6QJ59orDd3ca0i9GzTRjD4BL7En7SwFbTTGkfBzfHxC72-xRdt2N9Ga5ojD_CtGXXu9B9Y8shHnxmYWJrN_nsZrYa3Zby0-pR74ZMz-7reXXz_t318kO9_ny5Wl6s606inGvl4RYV585Q23uloTPU6U66xhvnSCpR3hCtFETQouy8kRx6ja5T4FFIcV69Pt0tFr8fKM92DLmjYXATxUO2RmnUHJUp5Jt_kti2IJRC0_wfVUoorkHqgr76C72LhzSVl63hShotGygQnqAuxZwT9XafwujSL4tgj2HaY5j2GKa9D7NoXpw0gYj-8AqKPRRl-_K07V20bptCtjebom8AQHHBufgNlRCi0A</recordid><startdate>20120501</startdate><enddate>20120501</enddate><creator>Zhu, Xiaolin</creator><creator>Gao, Feng</creator><creator>Liu, Desheng</creator><creator>Chen, Jin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>FBQ</scope><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7S9</scope><scope>L.6</scope><scope>F28</scope></search><sort><creationdate>20120501</creationdate><title>Modified Neighborhood Similar Pixel Interpolator Approach for Removing Thick Clouds in Landsat Images</title><author>Zhu, Xiaolin ; Gao, Feng ; Liu, Desheng ; Chen, Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-6d0b1622a9e7fd680c9ec8c4a5d9aae4631543743ee0714cd9420f81ac60d1343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>cloud cover</topic><topic>Cloud removal</topic><topic>Clouds</topic><topic>Earth</topic><topic>image analysis</topic><topic>Image edge detection</topic><topic>image processing</topic><topic>Image restoration</topic><topic>Land surface</topic><topic>Landsat</topic><topic>Linear prediction</topic><topic>Pixels</topic><topic>prediction</topic><topic>reflectance</topic><topic>Reflectivity</topic><topic>Remote sensing</topic><topic>Satellites</topic><topic>Simulation</topic><topic>Spectra</topic><topic>spectral analysis</topic><topic>temporal variation</topic><topic>Utilities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Xiaolin</creatorcontrib><creatorcontrib>Gao, Feng</creatorcontrib><creatorcontrib>Liu, Desheng</creatorcontrib><creatorcontrib>Chen, Jin</creatorcontrib><collection>AGRIS</collection><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhu, Xiaolin</au><au>Gao, Feng</au><au>Liu, Desheng</au><au>Chen, Jin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modified Neighborhood Similar Pixel Interpolator Approach for Removing Thick Clouds in Landsat Images</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2012-05-01</date><risdate>2012</risdate><volume>9</volume><issue>3</issue><spage>521</spage><epage>525</epage><pages>521-525</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Thick cloud contaminations in Landsat images limit their regular usage for land applications. Based on the assumption that the neighboring spectral-similar pixels outside cloudy patches have similar temporal change patterns to the cloudy pixels, this paper presents an improved neighborhood similar pixel interpolator (NSPI) approach to build a cloud-free imagery. NSPI approach was originally developed and tested for filling gaps due to the Landsat ETM+ Scan Line Corrector (SLC)-off problem. Both simulated and real cloudy images were used to evaluate the performance of the proposed method. The results show that NSPI approach can restore the reflectance of cloud-contaminated images with fewer artifact edge effects comparing to a contextual multiple linear prediction (CMLP) method. The reflectance restored by NSPI approach is more accurate especially when the cloud-free auxiliary image and cloudy image are acquired from different seasons and have different spectral characteristics.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2011.2173290</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2012-05, Vol.9 (3), p.521-525
issn 1545-598X
1558-0571
language eng
recordid cdi_proquest_journals_926498450
source IEEE Xplore (Online service)
subjects cloud cover
Cloud removal
Clouds
Earth
image analysis
Image edge detection
image processing
Image restoration
Land surface
Landsat
Linear prediction
Pixels
prediction
reflectance
Reflectivity
Remote sensing
Satellites
Simulation
Spectra
spectral analysis
temporal variation
Utilities
title Modified Neighborhood Similar Pixel Interpolator Approach for Removing Thick Clouds in Landsat Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T18%3A22%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modified%20Neighborhood%20Similar%20Pixel%20Interpolator%20Approach%20for%20Removing%20Thick%20Clouds%20in%20Landsat%20Images&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Zhu,%20Xiaolin&rft.date=2012-05-01&rft.volume=9&rft.issue=3&rft.spage=521&rft.epage=525&rft.pages=521-525&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2011.2173290&rft_dat=%3Cproquest_RIE%3E968182169%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=926498450&rft_id=info:pmid/&rft_ieee_id=6095313&rfr_iscdi=true