Modified Neighborhood Similar Pixel Interpolator Approach for Removing Thick Clouds in Landsat Images
Thick cloud contaminations in Landsat images limit their regular usage for land applications. Based on the assumption that the neighboring spectral-similar pixels outside cloudy patches have similar temporal change patterns to the cloudy pixels, this paper presents an improved neighborhood similar p...
Gespeichert in:
Veröffentlicht in: | IEEE geoscience and remote sensing letters 2012-05, Vol.9 (3), p.521-525 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 525 |
---|---|
container_issue | 3 |
container_start_page | 521 |
container_title | IEEE geoscience and remote sensing letters |
container_volume | 9 |
creator | Zhu, Xiaolin Gao, Feng Liu, Desheng Chen, Jin |
description | Thick cloud contaminations in Landsat images limit their regular usage for land applications. Based on the assumption that the neighboring spectral-similar pixels outside cloudy patches have similar temporal change patterns to the cloudy pixels, this paper presents an improved neighborhood similar pixel interpolator (NSPI) approach to build a cloud-free imagery. NSPI approach was originally developed and tested for filling gaps due to the Landsat ETM+ Scan Line Corrector (SLC)-off problem. Both simulated and real cloudy images were used to evaluate the performance of the proposed method. The results show that NSPI approach can restore the reflectance of cloud-contaminated images with fewer artifact edge effects comparing to a contextual multiple linear prediction (CMLP) method. The reflectance restored by NSPI approach is more accurate especially when the cloud-free auxiliary image and cloudy image are acquired from different seasons and have different spectral characteristics. |
doi_str_mv | 10.1109/LGRS.2011.2173290 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_926498450</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6095313</ieee_id><sourcerecordid>968182169</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-6d0b1622a9e7fd680c9ec8c4a5d9aae4631543743ee0714cd9420f81ac60d1343</originalsourceid><addsrcrecordid>eNqFkU9vEzEQxVcIJErhAyAOWFzgsmHG9nrtYxVBiRT-qGklbpa7nk1cdtfB3iD49jhKxYEDnGZG83ujN3pV9RxhgQjm7fryarPggLjg2Apu4EF1hk2ja2hafHjsZVM3Rn99XD3J-Q6AS63bs4o-Rh_6QJ59orDd3ca0i9GzTRjD4BL7En7SwFbTTGkfBzfHxC72-xRdt2N9Ga5ojD_CtGXXu9B9Y8shHnxmYWJrN_nsZrYa3Zby0-pR74ZMz-7reXXz_t318kO9_ny5Wl6s606inGvl4RYV585Q23uloTPU6U66xhvnSCpR3hCtFETQouy8kRx6ja5T4FFIcV69Pt0tFr8fKM92DLmjYXATxUO2RmnUHJUp5Jt_kti2IJRC0_wfVUoorkHqgr76C72LhzSVl63hShotGygQnqAuxZwT9XafwujSL4tgj2HaY5j2GKa9D7NoXpw0gYj-8AqKPRRl-_K07V20bptCtjebom8AQHHBufgNlRCi0A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>926498450</pqid></control><display><type>article</type><title>Modified Neighborhood Similar Pixel Interpolator Approach for Removing Thick Clouds in Landsat Images</title><source>IEEE Xplore (Online service)</source><creator>Zhu, Xiaolin ; Gao, Feng ; Liu, Desheng ; Chen, Jin</creator><creatorcontrib>Zhu, Xiaolin ; Gao, Feng ; Liu, Desheng ; Chen, Jin</creatorcontrib><description>Thick cloud contaminations in Landsat images limit their regular usage for land applications. Based on the assumption that the neighboring spectral-similar pixels outside cloudy patches have similar temporal change patterns to the cloudy pixels, this paper presents an improved neighborhood similar pixel interpolator (NSPI) approach to build a cloud-free imagery. NSPI approach was originally developed and tested for filling gaps due to the Landsat ETM+ Scan Line Corrector (SLC)-off problem. Both simulated and real cloudy images were used to evaluate the performance of the proposed method. The results show that NSPI approach can restore the reflectance of cloud-contaminated images with fewer artifact edge effects comparing to a contextual multiple linear prediction (CMLP) method. The reflectance restored by NSPI approach is more accurate especially when the cloud-free auxiliary image and cloudy image are acquired from different seasons and have different spectral characteristics.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2011.2173290</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>cloud cover ; Cloud removal ; Clouds ; Earth ; image analysis ; Image edge detection ; image processing ; Image restoration ; Land surface ; Landsat ; Linear prediction ; Pixels ; prediction ; reflectance ; Reflectivity ; Remote sensing ; Satellites ; Simulation ; Spectra ; spectral analysis ; temporal variation ; Utilities</subject><ispartof>IEEE geoscience and remote sensing letters, 2012-05, Vol.9 (3), p.521-525</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-6d0b1622a9e7fd680c9ec8c4a5d9aae4631543743ee0714cd9420f81ac60d1343</citedby><cites>FETCH-LOGICAL-c414t-6d0b1622a9e7fd680c9ec8c4a5d9aae4631543743ee0714cd9420f81ac60d1343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6095313$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6095313$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhu, Xiaolin</creatorcontrib><creatorcontrib>Gao, Feng</creatorcontrib><creatorcontrib>Liu, Desheng</creatorcontrib><creatorcontrib>Chen, Jin</creatorcontrib><title>Modified Neighborhood Similar Pixel Interpolator Approach for Removing Thick Clouds in Landsat Images</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Thick cloud contaminations in Landsat images limit their regular usage for land applications. Based on the assumption that the neighboring spectral-similar pixels outside cloudy patches have similar temporal change patterns to the cloudy pixels, this paper presents an improved neighborhood similar pixel interpolator (NSPI) approach to build a cloud-free imagery. NSPI approach was originally developed and tested for filling gaps due to the Landsat ETM+ Scan Line Corrector (SLC)-off problem. Both simulated and real cloudy images were used to evaluate the performance of the proposed method. The results show that NSPI approach can restore the reflectance of cloud-contaminated images with fewer artifact edge effects comparing to a contextual multiple linear prediction (CMLP) method. The reflectance restored by NSPI approach is more accurate especially when the cloud-free auxiliary image and cloudy image are acquired from different seasons and have different spectral characteristics.</description><subject>cloud cover</subject><subject>Cloud removal</subject><subject>Clouds</subject><subject>Earth</subject><subject>image analysis</subject><subject>Image edge detection</subject><subject>image processing</subject><subject>Image restoration</subject><subject>Land surface</subject><subject>Landsat</subject><subject>Linear prediction</subject><subject>Pixels</subject><subject>prediction</subject><subject>reflectance</subject><subject>Reflectivity</subject><subject>Remote sensing</subject><subject>Satellites</subject><subject>Simulation</subject><subject>Spectra</subject><subject>spectral analysis</subject><subject>temporal variation</subject><subject>Utilities</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqFkU9vEzEQxVcIJErhAyAOWFzgsmHG9nrtYxVBiRT-qGklbpa7nk1cdtfB3iD49jhKxYEDnGZG83ujN3pV9RxhgQjm7fryarPggLjg2Apu4EF1hk2ja2hafHjsZVM3Rn99XD3J-Q6AS63bs4o-Rh_6QJ59orDd3ca0i9GzTRjD4BL7En7SwFbTTGkfBzfHxC72-xRdt2N9Ga5ojD_CtGXXu9B9Y8shHnxmYWJrN_nsZrYa3Zby0-pR74ZMz-7reXXz_t318kO9_ny5Wl6s606inGvl4RYV585Q23uloTPU6U66xhvnSCpR3hCtFETQouy8kRx6ja5T4FFIcV69Pt0tFr8fKM92DLmjYXATxUO2RmnUHJUp5Jt_kti2IJRC0_wfVUoorkHqgr76C72LhzSVl63hShotGygQnqAuxZwT9XafwujSL4tgj2HaY5j2GKa9D7NoXpw0gYj-8AqKPRRl-_K07V20bptCtjebom8AQHHBufgNlRCi0A</recordid><startdate>20120501</startdate><enddate>20120501</enddate><creator>Zhu, Xiaolin</creator><creator>Gao, Feng</creator><creator>Liu, Desheng</creator><creator>Chen, Jin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>FBQ</scope><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7S9</scope><scope>L.6</scope><scope>F28</scope></search><sort><creationdate>20120501</creationdate><title>Modified Neighborhood Similar Pixel Interpolator Approach for Removing Thick Clouds in Landsat Images</title><author>Zhu, Xiaolin ; Gao, Feng ; Liu, Desheng ; Chen, Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-6d0b1622a9e7fd680c9ec8c4a5d9aae4631543743ee0714cd9420f81ac60d1343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>cloud cover</topic><topic>Cloud removal</topic><topic>Clouds</topic><topic>Earth</topic><topic>image analysis</topic><topic>Image edge detection</topic><topic>image processing</topic><topic>Image restoration</topic><topic>Land surface</topic><topic>Landsat</topic><topic>Linear prediction</topic><topic>Pixels</topic><topic>prediction</topic><topic>reflectance</topic><topic>Reflectivity</topic><topic>Remote sensing</topic><topic>Satellites</topic><topic>Simulation</topic><topic>Spectra</topic><topic>spectral analysis</topic><topic>temporal variation</topic><topic>Utilities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Xiaolin</creatorcontrib><creatorcontrib>Gao, Feng</creatorcontrib><creatorcontrib>Liu, Desheng</creatorcontrib><creatorcontrib>Chen, Jin</creatorcontrib><collection>AGRIS</collection><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhu, Xiaolin</au><au>Gao, Feng</au><au>Liu, Desheng</au><au>Chen, Jin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modified Neighborhood Similar Pixel Interpolator Approach for Removing Thick Clouds in Landsat Images</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2012-05-01</date><risdate>2012</risdate><volume>9</volume><issue>3</issue><spage>521</spage><epage>525</epage><pages>521-525</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Thick cloud contaminations in Landsat images limit their regular usage for land applications. Based on the assumption that the neighboring spectral-similar pixels outside cloudy patches have similar temporal change patterns to the cloudy pixels, this paper presents an improved neighborhood similar pixel interpolator (NSPI) approach to build a cloud-free imagery. NSPI approach was originally developed and tested for filling gaps due to the Landsat ETM+ Scan Line Corrector (SLC)-off problem. Both simulated and real cloudy images were used to evaluate the performance of the proposed method. The results show that NSPI approach can restore the reflectance of cloud-contaminated images with fewer artifact edge effects comparing to a contextual multiple linear prediction (CMLP) method. The reflectance restored by NSPI approach is more accurate especially when the cloud-free auxiliary image and cloudy image are acquired from different seasons and have different spectral characteristics.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2011.2173290</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1545-598X |
ispartof | IEEE geoscience and remote sensing letters, 2012-05, Vol.9 (3), p.521-525 |
issn | 1545-598X 1558-0571 |
language | eng |
recordid | cdi_proquest_journals_926498450 |
source | IEEE Xplore (Online service) |
subjects | cloud cover Cloud removal Clouds Earth image analysis Image edge detection image processing Image restoration Land surface Landsat Linear prediction Pixels prediction reflectance Reflectivity Remote sensing Satellites Simulation Spectra spectral analysis temporal variation Utilities |
title | Modified Neighborhood Similar Pixel Interpolator Approach for Removing Thick Clouds in Landsat Images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T18%3A22%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modified%20Neighborhood%20Similar%20Pixel%20Interpolator%20Approach%20for%20Removing%20Thick%20Clouds%20in%20Landsat%20Images&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Zhu,%20Xiaolin&rft.date=2012-05-01&rft.volume=9&rft.issue=3&rft.spage=521&rft.epage=525&rft.pages=521-525&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2011.2173290&rft_dat=%3Cproquest_RIE%3E968182169%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=926498450&rft_id=info:pmid/&rft_ieee_id=6095313&rfr_iscdi=true |