Normals to Coordinate Hypersurfaces as Weight Minus-One Covariant Base Vectors

This paper reviews the well established development of tangents to curves at a point as a linear (vector) space [1], and contributes an analogous development for normals to hypersurfaces containing the point. It is shown that, for any allowable coordinate system, the tangents to the coordinate curve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM review 1973-04, Vol.15 (2), p.275-282
Hauptverfasser: Scholten, William B., Gaggioli, Richard A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 282
container_issue 2
container_start_page 275
container_title SIAM review
container_volume 15
creator Scholten, William B.
Gaggioli, Richard A.
description This paper reviews the well established development of tangents to curves at a point as a linear (vector) space [1], and contributes an analogous development for normals to hypersurfaces containing the point. It is shown that, for any allowable coordinate system, the tangents to the coordinate curves serve as (weight zero) contravariant base vectors for the tangent space, and the normals to the coordinate hypersurfaces serve as weight minus-one covariant base vectors for the normal space.
doi_str_mv 10.1137/1015029
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_926197198</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2028601</jstor_id><sourcerecordid>2028601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c203t-69403382fd6286136a64cff467802f3c2517de8e3fba94692c31ad6e76414f2b3</originalsourceid><addsrcrecordid>eNo90E1LAzEQBuAgCtYq_gEPwYun1Zkkm90ctagVanvx47ik2US32E1NskL_vZEWT8PAwzsfhJwjXCPy6gYBS2DqgIwQVFlUDOCQjAC4LFCI8picxLiC3Ndcjch87sNaf0WaPJ14H9qu18nS6XZjQxyC08ZGqiN9t93HZ6LPXT_EYtHbjH906HSf6J2Olr5Zk3yIp-TI5TR7tq9j8vpw_zKZFrPF49PkdlYYBjwVUgngvGaulayWyKWWwjgnZFUDc9ywEqvW1pa7pVZCKmY46lbaSgoUji35mFzucjfBfw82pmblh9DnkY1iElWFqs7oaodM8DEG65pN6NY6bBuE5u9Xzf5XWV7s5CrmK_4Zg7wdIP8FH4Ni4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>926197198</pqid></control><display><type>article</type><title>Normals to Coordinate Hypersurfaces as Weight Minus-One Covariant Base Vectors</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>LOCUS - SIAM's Online Journal Archive</source><creator>Scholten, William B. ; Gaggioli, Richard A.</creator><creatorcontrib>Scholten, William B. ; Gaggioli, Richard A.</creatorcontrib><description>This paper reviews the well established development of tangents to curves at a point as a linear (vector) space [1], and contributes an analogous development for normals to hypersurfaces containing the point. It is shown that, for any allowable coordinate system, the tangents to the coordinate curves serve as (weight zero) contravariant base vectors for the tangent space, and the normals to the coordinate hypersurfaces serve as weight minus-one covariant base vectors for the normal space.</description><identifier>ISSN: 0036-1445</identifier><identifier>EISSN: 1095-7200</identifier><identifier>DOI: 10.1137/1015029</identifier><identifier>CODEN: SIREAD</identifier><language>eng</language><publisher>Philadelphia: The Society for Industrial and Applied Mathematics</publisher><subject>Coordinate systems ; Coordinate transformations ; Curves ; Determinants ; Hypersurfaces ; Mathematical manifolds ; Mathematical vectors ; Neighborhoods ; Partial derivatives ; Tangent function ; Tangents</subject><ispartof>SIAM review, 1973-04, Vol.15 (2), p.275-282</ispartof><rights>Copyright 1973 The Society for Industrial and Applied Mathematics</rights><rights>[Copyright] © 1973 © Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c203t-69403382fd6286136a64cff467802f3c2517de8e3fba94692c31ad6e76414f2b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2028601$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2028601$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,3185,27924,27925,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>Scholten, William B.</creatorcontrib><creatorcontrib>Gaggioli, Richard A.</creatorcontrib><title>Normals to Coordinate Hypersurfaces as Weight Minus-One Covariant Base Vectors</title><title>SIAM review</title><description>This paper reviews the well established development of tangents to curves at a point as a linear (vector) space [1], and contributes an analogous development for normals to hypersurfaces containing the point. It is shown that, for any allowable coordinate system, the tangents to the coordinate curves serve as (weight zero) contravariant base vectors for the tangent space, and the normals to the coordinate hypersurfaces serve as weight minus-one covariant base vectors for the normal space.</description><subject>Coordinate systems</subject><subject>Coordinate transformations</subject><subject>Curves</subject><subject>Determinants</subject><subject>Hypersurfaces</subject><subject>Mathematical manifolds</subject><subject>Mathematical vectors</subject><subject>Neighborhoods</subject><subject>Partial derivatives</subject><subject>Tangent function</subject><subject>Tangents</subject><issn>0036-1445</issn><issn>1095-7200</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1973</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo90E1LAzEQBuAgCtYq_gEPwYun1Zkkm90ctagVanvx47ik2US32E1NskL_vZEWT8PAwzsfhJwjXCPy6gYBS2DqgIwQVFlUDOCQjAC4LFCI8picxLiC3Ndcjch87sNaf0WaPJ14H9qu18nS6XZjQxyC08ZGqiN9t93HZ6LPXT_EYtHbjH906HSf6J2Olr5Zk3yIp-TI5TR7tq9j8vpw_zKZFrPF49PkdlYYBjwVUgngvGaulayWyKWWwjgnZFUDc9ywEqvW1pa7pVZCKmY46lbaSgoUji35mFzucjfBfw82pmblh9DnkY1iElWFqs7oaodM8DEG65pN6NY6bBuE5u9Xzf5XWV7s5CrmK_4Zg7wdIP8FH4Ni4w</recordid><startdate>19730401</startdate><enddate>19730401</enddate><creator>Scholten, William B.</creator><creator>Gaggioli, Richard A.</creator><general>The Society for Industrial and Applied Mathematics</general><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>19730401</creationdate><title>Normals to Coordinate Hypersurfaces as Weight Minus-One Covariant Base Vectors</title><author>Scholten, William B. ; Gaggioli, Richard A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c203t-69403382fd6286136a64cff467802f3c2517de8e3fba94692c31ad6e76414f2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1973</creationdate><topic>Coordinate systems</topic><topic>Coordinate transformations</topic><topic>Curves</topic><topic>Determinants</topic><topic>Hypersurfaces</topic><topic>Mathematical manifolds</topic><topic>Mathematical vectors</topic><topic>Neighborhoods</topic><topic>Partial derivatives</topic><topic>Tangent function</topic><topic>Tangents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scholten, William B.</creatorcontrib><creatorcontrib>Gaggioli, Richard A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career &amp; Technical Education Database</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scholten, William B.</au><au>Gaggioli, Richard A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Normals to Coordinate Hypersurfaces as Weight Minus-One Covariant Base Vectors</atitle><jtitle>SIAM review</jtitle><date>1973-04-01</date><risdate>1973</risdate><volume>15</volume><issue>2</issue><spage>275</spage><epage>282</epage><pages>275-282</pages><issn>0036-1445</issn><eissn>1095-7200</eissn><coden>SIREAD</coden><abstract>This paper reviews the well established development of tangents to curves at a point as a linear (vector) space [1], and contributes an analogous development for normals to hypersurfaces containing the point. It is shown that, for any allowable coordinate system, the tangents to the coordinate curves serve as (weight zero) contravariant base vectors for the tangent space, and the normals to the coordinate hypersurfaces serve as weight minus-one covariant base vectors for the normal space.</abstract><cop>Philadelphia</cop><pub>The Society for Industrial and Applied Mathematics</pub><doi>10.1137/1015029</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-1445
ispartof SIAM review, 1973-04, Vol.15 (2), p.275-282
issn 0036-1445
1095-7200
language eng
recordid cdi_proquest_journals_926197198
source JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; LOCUS - SIAM's Online Journal Archive
subjects Coordinate systems
Coordinate transformations
Curves
Determinants
Hypersurfaces
Mathematical manifolds
Mathematical vectors
Neighborhoods
Partial derivatives
Tangent function
Tangents
title Normals to Coordinate Hypersurfaces as Weight Minus-One Covariant Base Vectors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T10%3A37%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Normals%20to%20Coordinate%20Hypersurfaces%20as%20Weight%20Minus-One%20Covariant%20Base%20Vectors&rft.jtitle=SIAM%20review&rft.au=Scholten,%20William%20B.&rft.date=1973-04-01&rft.volume=15&rft.issue=2&rft.spage=275&rft.epage=282&rft.pages=275-282&rft.issn=0036-1445&rft.eissn=1095-7200&rft.coden=SIREAD&rft_id=info:doi/10.1137/1015029&rft_dat=%3Cjstor_proqu%3E2028601%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=926197198&rft_id=info:pmid/&rft_jstor_id=2028601&rfr_iscdi=true