Normals to Coordinate Hypersurfaces as Weight Minus-One Covariant Base Vectors
This paper reviews the well established development of tangents to curves at a point as a linear (vector) space [1], and contributes an analogous development for normals to hypersurfaces containing the point. It is shown that, for any allowable coordinate system, the tangents to the coordinate curve...
Gespeichert in:
Veröffentlicht in: | SIAM review 1973-04, Vol.15 (2), p.275-282 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 282 |
---|---|
container_issue | 2 |
container_start_page | 275 |
container_title | SIAM review |
container_volume | 15 |
creator | Scholten, William B. Gaggioli, Richard A. |
description | This paper reviews the well established development of tangents to curves at a point as a linear (vector) space [1], and contributes an analogous development for normals to hypersurfaces containing the point. It is shown that, for any allowable coordinate system, the tangents to the coordinate curves serve as (weight zero) contravariant base vectors for the tangent space, and the normals to the coordinate hypersurfaces serve as weight minus-one covariant base vectors for the normal space. |
doi_str_mv | 10.1137/1015029 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_926197198</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2028601</jstor_id><sourcerecordid>2028601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c203t-69403382fd6286136a64cff467802f3c2517de8e3fba94692c31ad6e76414f2b3</originalsourceid><addsrcrecordid>eNo90E1LAzEQBuAgCtYq_gEPwYun1Zkkm90ctagVanvx47ik2US32E1NskL_vZEWT8PAwzsfhJwjXCPy6gYBS2DqgIwQVFlUDOCQjAC4LFCI8picxLiC3Ndcjch87sNaf0WaPJ14H9qu18nS6XZjQxyC08ZGqiN9t93HZ6LPXT_EYtHbjH906HSf6J2Olr5Zk3yIp-TI5TR7tq9j8vpw_zKZFrPF49PkdlYYBjwVUgngvGaulayWyKWWwjgnZFUDc9ywEqvW1pa7pVZCKmY46lbaSgoUji35mFzucjfBfw82pmblh9DnkY1iElWFqs7oaodM8DEG65pN6NY6bBuE5u9Xzf5XWV7s5CrmK_4Zg7wdIP8FH4Ni4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>926197198</pqid></control><display><type>article</type><title>Normals to Coordinate Hypersurfaces as Weight Minus-One Covariant Base Vectors</title><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>LOCUS - SIAM's Online Journal Archive</source><creator>Scholten, William B. ; Gaggioli, Richard A.</creator><creatorcontrib>Scholten, William B. ; Gaggioli, Richard A.</creatorcontrib><description>This paper reviews the well established development of tangents to curves at a point as a linear (vector) space [1], and contributes an analogous development for normals to hypersurfaces containing the point. It is shown that, for any allowable coordinate system, the tangents to the coordinate curves serve as (weight zero) contravariant base vectors for the tangent space, and the normals to the coordinate hypersurfaces serve as weight minus-one covariant base vectors for the normal space.</description><identifier>ISSN: 0036-1445</identifier><identifier>EISSN: 1095-7200</identifier><identifier>DOI: 10.1137/1015029</identifier><identifier>CODEN: SIREAD</identifier><language>eng</language><publisher>Philadelphia: The Society for Industrial and Applied Mathematics</publisher><subject>Coordinate systems ; Coordinate transformations ; Curves ; Determinants ; Hypersurfaces ; Mathematical manifolds ; Mathematical vectors ; Neighborhoods ; Partial derivatives ; Tangent function ; Tangents</subject><ispartof>SIAM review, 1973-04, Vol.15 (2), p.275-282</ispartof><rights>Copyright 1973 The Society for Industrial and Applied Mathematics</rights><rights>[Copyright] © 1973 © Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c203t-69403382fd6286136a64cff467802f3c2517de8e3fba94692c31ad6e76414f2b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2028601$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2028601$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,3185,27924,27925,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>Scholten, William B.</creatorcontrib><creatorcontrib>Gaggioli, Richard A.</creatorcontrib><title>Normals to Coordinate Hypersurfaces as Weight Minus-One Covariant Base Vectors</title><title>SIAM review</title><description>This paper reviews the well established development of tangents to curves at a point as a linear (vector) space [1], and contributes an analogous development for normals to hypersurfaces containing the point. It is shown that, for any allowable coordinate system, the tangents to the coordinate curves serve as (weight zero) contravariant base vectors for the tangent space, and the normals to the coordinate hypersurfaces serve as weight minus-one covariant base vectors for the normal space.</description><subject>Coordinate systems</subject><subject>Coordinate transformations</subject><subject>Curves</subject><subject>Determinants</subject><subject>Hypersurfaces</subject><subject>Mathematical manifolds</subject><subject>Mathematical vectors</subject><subject>Neighborhoods</subject><subject>Partial derivatives</subject><subject>Tangent function</subject><subject>Tangents</subject><issn>0036-1445</issn><issn>1095-7200</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1973</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo90E1LAzEQBuAgCtYq_gEPwYun1Zkkm90ctagVanvx47ik2US32E1NskL_vZEWT8PAwzsfhJwjXCPy6gYBS2DqgIwQVFlUDOCQjAC4LFCI8picxLiC3Ndcjch87sNaf0WaPJ14H9qu18nS6XZjQxyC08ZGqiN9t93HZ6LPXT_EYtHbjH906HSf6J2Olr5Zk3yIp-TI5TR7tq9j8vpw_zKZFrPF49PkdlYYBjwVUgngvGaulayWyKWWwjgnZFUDc9ywEqvW1pa7pVZCKmY46lbaSgoUji35mFzucjfBfw82pmblh9DnkY1iElWFqs7oaodM8DEG65pN6NY6bBuE5u9Xzf5XWV7s5CrmK_4Zg7wdIP8FH4Ni4w</recordid><startdate>19730401</startdate><enddate>19730401</enddate><creator>Scholten, William B.</creator><creator>Gaggioli, Richard A.</creator><general>The Society for Industrial and Applied Mathematics</general><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>19730401</creationdate><title>Normals to Coordinate Hypersurfaces as Weight Minus-One Covariant Base Vectors</title><author>Scholten, William B. ; Gaggioli, Richard A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c203t-69403382fd6286136a64cff467802f3c2517de8e3fba94692c31ad6e76414f2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1973</creationdate><topic>Coordinate systems</topic><topic>Coordinate transformations</topic><topic>Curves</topic><topic>Determinants</topic><topic>Hypersurfaces</topic><topic>Mathematical manifolds</topic><topic>Mathematical vectors</topic><topic>Neighborhoods</topic><topic>Partial derivatives</topic><topic>Tangent function</topic><topic>Tangents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scholten, William B.</creatorcontrib><creatorcontrib>Gaggioli, Richard A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career & Technical Education Database</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scholten, William B.</au><au>Gaggioli, Richard A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Normals to Coordinate Hypersurfaces as Weight Minus-One Covariant Base Vectors</atitle><jtitle>SIAM review</jtitle><date>1973-04-01</date><risdate>1973</risdate><volume>15</volume><issue>2</issue><spage>275</spage><epage>282</epage><pages>275-282</pages><issn>0036-1445</issn><eissn>1095-7200</eissn><coden>SIREAD</coden><abstract>This paper reviews the well established development of tangents to curves at a point as a linear (vector) space [1], and contributes an analogous development for normals to hypersurfaces containing the point. It is shown that, for any allowable coordinate system, the tangents to the coordinate curves serve as (weight zero) contravariant base vectors for the tangent space, and the normals to the coordinate hypersurfaces serve as weight minus-one covariant base vectors for the normal space.</abstract><cop>Philadelphia</cop><pub>The Society for Industrial and Applied Mathematics</pub><doi>10.1137/1015029</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-1445 |
ispartof | SIAM review, 1973-04, Vol.15 (2), p.275-282 |
issn | 0036-1445 1095-7200 |
language | eng |
recordid | cdi_proquest_journals_926197198 |
source | JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; LOCUS - SIAM's Online Journal Archive |
subjects | Coordinate systems Coordinate transformations Curves Determinants Hypersurfaces Mathematical manifolds Mathematical vectors Neighborhoods Partial derivatives Tangent function Tangents |
title | Normals to Coordinate Hypersurfaces as Weight Minus-One Covariant Base Vectors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T10%3A37%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Normals%20to%20Coordinate%20Hypersurfaces%20as%20Weight%20Minus-One%20Covariant%20Base%20Vectors&rft.jtitle=SIAM%20review&rft.au=Scholten,%20William%20B.&rft.date=1973-04-01&rft.volume=15&rft.issue=2&rft.spage=275&rft.epage=282&rft.pages=275-282&rft.issn=0036-1445&rft.eissn=1095-7200&rft.coden=SIREAD&rft_id=info:doi/10.1137/1015029&rft_dat=%3Cjstor_proqu%3E2028601%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=926197198&rft_id=info:pmid/&rft_jstor_id=2028601&rfr_iscdi=true |