The Role of the Group Generalized Inverse in the Theory of Finite Markov Chains
For an m-state homogeneous Markov chain whose one-step transition matrix is T, the group inverse, A#, of the matrix A = 1 - T is shown to play a central role. For an ergodic chain, it is demonstrated that virtually everything that one would want to known about the chain can be determined by computin...
Gespeichert in:
Veröffentlicht in: | SIAM review 1975-07, Vol.17 (3), p.443-464 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 464 |
---|---|
container_issue | 3 |
container_start_page | 443 |
container_title | SIAM review |
container_volume | 17 |
creator | Meyer, Carl D. |
description | For an m-state homogeneous Markov chain whose one-step transition matrix is T, the group inverse, A#, of the matrix A = 1 - T is shown to play a central role. For an ergodic chain, it is demonstrated that virtually everything that one would want to known about the chain can be determined by computing A#. Furthermore, it is shown that the introduction of A#into the theory of ergodic chains provides not only a theoretical advantage, but it also provides a definite computational advantage that is not realized in the traditional framework of the theory. |
doi_str_mv | 10.1137/1017044 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_926192809</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2028885</jstor_id><sourcerecordid>2028885</sourcerecordid><originalsourceid>FETCH-LOGICAL-c271t-316929704385806580805f426fe75ce445218f9e6663f5e45c1a168cb3492c683</originalsourceid><addsrcrecordid>eNo9kEFLAzEQhYMoWKv4BzwEL55WZ5JNNjlKsWuhUpB6XtZ1QrfWTU22hfrrTW3xMMwMfDPv8Ri7RrhHlMUDAhaQ5ydsgGBVVgiAUzYAkDrDPFfn7CLGJaTdSDtgs_mC-KtfEfeO92kug9-seUkdhXrV_tAHn3RbCpF42_0B6cCH3R4ft13bE3-pw6ff8tGibrt4yc5cvYp0dexD9jZ-mo-es-msnIwep1kjCuwzidoKm3xKowzoVAaUy4V2VKiGkk-BxlnSWkunKFcN1qhN8y5zKxpt5JDdHv6ug__eUOyrpd-ELklWVmi0woBN0N0BaoKPMZCr1qH9qsOuQqj2YVXHsBJ5cyCXsffhHxMgjDFK_gLqR2FC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>926192809</pqid></control><display><type>article</type><title>The Role of the Group Generalized Inverse in the Theory of Finite Markov Chains</title><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>LOCUS - SIAM's Online Journal Archive</source><creator>Meyer, Carl D.</creator><creatorcontrib>Meyer, Carl D.</creatorcontrib><description>For an m-state homogeneous Markov chain whose one-step transition matrix is T, the group inverse, A#, of the matrix A = 1 - T is shown to play a central role. For an ergodic chain, it is demonstrated that virtually everything that one would want to known about the chain can be determined by computing A#. Furthermore, it is shown that the introduction of A#into the theory of ergodic chains provides not only a theoretical advantage, but it also provides a definite computational advantage that is not realized in the traditional framework of the theory.</description><identifier>ISSN: 0036-1445</identifier><identifier>EISSN: 1095-7200</identifier><identifier>DOI: 10.1137/1017044</identifier><identifier>CODEN: SIREAD</identifier><language>eng</language><publisher>Philadelphia: The Society for Industrial and Applied Mathematics</publisher><subject>Algebra ; Eigenvalues ; Ergodic theory ; Jordan matrices ; Logical proofs ; Markov analysis ; Markov chains ; Mathematical vectors ; Matrices ; Matrix inversion</subject><ispartof>SIAM review, 1975-07, Vol.17 (3), p.443-464</ispartof><rights>Copyright 1975 The Society for Industrial and Applied Mathematics</rights><rights>[Copyright] © 1975 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c271t-316929704385806580805f426fe75ce445218f9e6663f5e45c1a168cb3492c683</citedby><cites>FETCH-LOGICAL-c271t-316929704385806580805f426fe75ce445218f9e6663f5e45c1a168cb3492c683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2028885$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2028885$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,3183,27922,27923,58015,58019,58248,58252</link.rule.ids></links><search><creatorcontrib>Meyer, Carl D.</creatorcontrib><title>The Role of the Group Generalized Inverse in the Theory of Finite Markov Chains</title><title>SIAM review</title><description>For an m-state homogeneous Markov chain whose one-step transition matrix is T, the group inverse, A#, of the matrix A = 1 - T is shown to play a central role. For an ergodic chain, it is demonstrated that virtually everything that one would want to known about the chain can be determined by computing A#. Furthermore, it is shown that the introduction of A#into the theory of ergodic chains provides not only a theoretical advantage, but it also provides a definite computational advantage that is not realized in the traditional framework of the theory.</description><subject>Algebra</subject><subject>Eigenvalues</subject><subject>Ergodic theory</subject><subject>Jordan matrices</subject><subject>Logical proofs</subject><subject>Markov analysis</subject><subject>Markov chains</subject><subject>Mathematical vectors</subject><subject>Matrices</subject><subject>Matrix inversion</subject><issn>0036-1445</issn><issn>1095-7200</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1975</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo9kEFLAzEQhYMoWKv4BzwEL55WZ5JNNjlKsWuhUpB6XtZ1QrfWTU22hfrrTW3xMMwMfDPv8Ri7RrhHlMUDAhaQ5ydsgGBVVgiAUzYAkDrDPFfn7CLGJaTdSDtgs_mC-KtfEfeO92kug9-seUkdhXrV_tAHn3RbCpF42_0B6cCH3R4ft13bE3-pw6ff8tGibrt4yc5cvYp0dexD9jZ-mo-es-msnIwep1kjCuwzidoKm3xKowzoVAaUy4V2VKiGkk-BxlnSWkunKFcN1qhN8y5zKxpt5JDdHv6ug__eUOyrpd-ELklWVmi0woBN0N0BaoKPMZCr1qH9qsOuQqj2YVXHsBJ5cyCXsffhHxMgjDFK_gLqR2FC</recordid><startdate>19750701</startdate><enddate>19750701</enddate><creator>Meyer, Carl D.</creator><general>The Society for Industrial and Applied Mathematics</general><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>19750701</creationdate><title>The Role of the Group Generalized Inverse in the Theory of Finite Markov Chains</title><author>Meyer, Carl D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c271t-316929704385806580805f426fe75ce445218f9e6663f5e45c1a168cb3492c683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1975</creationdate><topic>Algebra</topic><topic>Eigenvalues</topic><topic>Ergodic theory</topic><topic>Jordan matrices</topic><topic>Logical proofs</topic><topic>Markov analysis</topic><topic>Markov chains</topic><topic>Mathematical vectors</topic><topic>Matrices</topic><topic>Matrix inversion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meyer, Carl D.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career & Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meyer, Carl D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Role of the Group Generalized Inverse in the Theory of Finite Markov Chains</atitle><jtitle>SIAM review</jtitle><date>1975-07-01</date><risdate>1975</risdate><volume>17</volume><issue>3</issue><spage>443</spage><epage>464</epage><pages>443-464</pages><issn>0036-1445</issn><eissn>1095-7200</eissn><coden>SIREAD</coden><abstract>For an m-state homogeneous Markov chain whose one-step transition matrix is T, the group inverse, A#, of the matrix A = 1 - T is shown to play a central role. For an ergodic chain, it is demonstrated that virtually everything that one would want to known about the chain can be determined by computing A#. Furthermore, it is shown that the introduction of A#into the theory of ergodic chains provides not only a theoretical advantage, but it also provides a definite computational advantage that is not realized in the traditional framework of the theory.</abstract><cop>Philadelphia</cop><pub>The Society for Industrial and Applied Mathematics</pub><doi>10.1137/1017044</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-1445 |
ispartof | SIAM review, 1975-07, Vol.17 (3), p.443-464 |
issn | 0036-1445 1095-7200 |
language | eng |
recordid | cdi_proquest_journals_926192809 |
source | JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; LOCUS - SIAM's Online Journal Archive |
subjects | Algebra Eigenvalues Ergodic theory Jordan matrices Logical proofs Markov analysis Markov chains Mathematical vectors Matrices Matrix inversion |
title | The Role of the Group Generalized Inverse in the Theory of Finite Markov Chains |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A09%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Role%20of%20the%20Group%20Generalized%20Inverse%20in%20the%20Theory%20of%20Finite%20Markov%20Chains&rft.jtitle=SIAM%20review&rft.au=Meyer,%20Carl%20D.&rft.date=1975-07-01&rft.volume=17&rft.issue=3&rft.spage=443&rft.epage=464&rft.pages=443-464&rft.issn=0036-1445&rft.eissn=1095-7200&rft.coden=SIREAD&rft_id=info:doi/10.1137/1017044&rft_dat=%3Cjstor_proqu%3E2028885%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=926192809&rft_id=info:pmid/&rft_jstor_id=2028885&rfr_iscdi=true |