The Role of the Group Generalized Inverse in the Theory of Finite Markov Chains

For an m-state homogeneous Markov chain whose one-step transition matrix is T, the group inverse, A#, of the matrix A = 1 - T is shown to play a central role. For an ergodic chain, it is demonstrated that virtually everything that one would want to known about the chain can be determined by computin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM review 1975-07, Vol.17 (3), p.443-464
1. Verfasser: Meyer, Carl D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 464
container_issue 3
container_start_page 443
container_title SIAM review
container_volume 17
creator Meyer, Carl D.
description For an m-state homogeneous Markov chain whose one-step transition matrix is T, the group inverse, A#, of the matrix A = 1 - T is shown to play a central role. For an ergodic chain, it is demonstrated that virtually everything that one would want to known about the chain can be determined by computing A#. Furthermore, it is shown that the introduction of A#into the theory of ergodic chains provides not only a theoretical advantage, but it also provides a definite computational advantage that is not realized in the traditional framework of the theory.
doi_str_mv 10.1137/1017044
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_926192809</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2028885</jstor_id><sourcerecordid>2028885</sourcerecordid><originalsourceid>FETCH-LOGICAL-c271t-316929704385806580805f426fe75ce445218f9e6663f5e45c1a168cb3492c683</originalsourceid><addsrcrecordid>eNo9kEFLAzEQhYMoWKv4BzwEL55WZ5JNNjlKsWuhUpB6XtZ1QrfWTU22hfrrTW3xMMwMfDPv8Ri7RrhHlMUDAhaQ5ydsgGBVVgiAUzYAkDrDPFfn7CLGJaTdSDtgs_mC-KtfEfeO92kug9-seUkdhXrV_tAHn3RbCpF42_0B6cCH3R4ft13bE3-pw6ff8tGibrt4yc5cvYp0dexD9jZ-mo-es-msnIwep1kjCuwzidoKm3xKowzoVAaUy4V2VKiGkk-BxlnSWkunKFcN1qhN8y5zKxpt5JDdHv6ug__eUOyrpd-ELklWVmi0woBN0N0BaoKPMZCr1qH9qsOuQqj2YVXHsBJ5cyCXsffhHxMgjDFK_gLqR2FC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>926192809</pqid></control><display><type>article</type><title>The Role of the Group Generalized Inverse in the Theory of Finite Markov Chains</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>LOCUS - SIAM's Online Journal Archive</source><creator>Meyer, Carl D.</creator><creatorcontrib>Meyer, Carl D.</creatorcontrib><description>For an m-state homogeneous Markov chain whose one-step transition matrix is T, the group inverse, A#, of the matrix A = 1 - T is shown to play a central role. For an ergodic chain, it is demonstrated that virtually everything that one would want to known about the chain can be determined by computing A#. Furthermore, it is shown that the introduction of A#into the theory of ergodic chains provides not only a theoretical advantage, but it also provides a definite computational advantage that is not realized in the traditional framework of the theory.</description><identifier>ISSN: 0036-1445</identifier><identifier>EISSN: 1095-7200</identifier><identifier>DOI: 10.1137/1017044</identifier><identifier>CODEN: SIREAD</identifier><language>eng</language><publisher>Philadelphia: The Society for Industrial and Applied Mathematics</publisher><subject>Algebra ; Eigenvalues ; Ergodic theory ; Jordan matrices ; Logical proofs ; Markov analysis ; Markov chains ; Mathematical vectors ; Matrices ; Matrix inversion</subject><ispartof>SIAM review, 1975-07, Vol.17 (3), p.443-464</ispartof><rights>Copyright 1975 The Society for Industrial and Applied Mathematics</rights><rights>[Copyright] © 1975 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c271t-316929704385806580805f426fe75ce445218f9e6663f5e45c1a168cb3492c683</citedby><cites>FETCH-LOGICAL-c271t-316929704385806580805f426fe75ce445218f9e6663f5e45c1a168cb3492c683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2028885$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2028885$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,3183,27922,27923,58015,58019,58248,58252</link.rule.ids></links><search><creatorcontrib>Meyer, Carl D.</creatorcontrib><title>The Role of the Group Generalized Inverse in the Theory of Finite Markov Chains</title><title>SIAM review</title><description>For an m-state homogeneous Markov chain whose one-step transition matrix is T, the group inverse, A#, of the matrix A = 1 - T is shown to play a central role. For an ergodic chain, it is demonstrated that virtually everything that one would want to known about the chain can be determined by computing A#. Furthermore, it is shown that the introduction of A#into the theory of ergodic chains provides not only a theoretical advantage, but it also provides a definite computational advantage that is not realized in the traditional framework of the theory.</description><subject>Algebra</subject><subject>Eigenvalues</subject><subject>Ergodic theory</subject><subject>Jordan matrices</subject><subject>Logical proofs</subject><subject>Markov analysis</subject><subject>Markov chains</subject><subject>Mathematical vectors</subject><subject>Matrices</subject><subject>Matrix inversion</subject><issn>0036-1445</issn><issn>1095-7200</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1975</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo9kEFLAzEQhYMoWKv4BzwEL55WZ5JNNjlKsWuhUpB6XtZ1QrfWTU22hfrrTW3xMMwMfDPv8Ri7RrhHlMUDAhaQ5ydsgGBVVgiAUzYAkDrDPFfn7CLGJaTdSDtgs_mC-KtfEfeO92kug9-seUkdhXrV_tAHn3RbCpF42_0B6cCH3R4ft13bE3-pw6ff8tGibrt4yc5cvYp0dexD9jZ-mo-es-msnIwep1kjCuwzidoKm3xKowzoVAaUy4V2VKiGkk-BxlnSWkunKFcN1qhN8y5zKxpt5JDdHv6ug__eUOyrpd-ELklWVmi0woBN0N0BaoKPMZCr1qH9qsOuQqj2YVXHsBJ5cyCXsffhHxMgjDFK_gLqR2FC</recordid><startdate>19750701</startdate><enddate>19750701</enddate><creator>Meyer, Carl D.</creator><general>The Society for Industrial and Applied Mathematics</general><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>19750701</creationdate><title>The Role of the Group Generalized Inverse in the Theory of Finite Markov Chains</title><author>Meyer, Carl D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c271t-316929704385806580805f426fe75ce445218f9e6663f5e45c1a168cb3492c683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1975</creationdate><topic>Algebra</topic><topic>Eigenvalues</topic><topic>Ergodic theory</topic><topic>Jordan matrices</topic><topic>Logical proofs</topic><topic>Markov analysis</topic><topic>Markov chains</topic><topic>Mathematical vectors</topic><topic>Matrices</topic><topic>Matrix inversion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meyer, Carl D.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career &amp; Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meyer, Carl D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Role of the Group Generalized Inverse in the Theory of Finite Markov Chains</atitle><jtitle>SIAM review</jtitle><date>1975-07-01</date><risdate>1975</risdate><volume>17</volume><issue>3</issue><spage>443</spage><epage>464</epage><pages>443-464</pages><issn>0036-1445</issn><eissn>1095-7200</eissn><coden>SIREAD</coden><abstract>For an m-state homogeneous Markov chain whose one-step transition matrix is T, the group inverse, A#, of the matrix A = 1 - T is shown to play a central role. For an ergodic chain, it is demonstrated that virtually everything that one would want to known about the chain can be determined by computing A#. Furthermore, it is shown that the introduction of A#into the theory of ergodic chains provides not only a theoretical advantage, but it also provides a definite computational advantage that is not realized in the traditional framework of the theory.</abstract><cop>Philadelphia</cop><pub>The Society for Industrial and Applied Mathematics</pub><doi>10.1137/1017044</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-1445
ispartof SIAM review, 1975-07, Vol.17 (3), p.443-464
issn 0036-1445
1095-7200
language eng
recordid cdi_proquest_journals_926192809
source JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; LOCUS - SIAM's Online Journal Archive
subjects Algebra
Eigenvalues
Ergodic theory
Jordan matrices
Logical proofs
Markov analysis
Markov chains
Mathematical vectors
Matrices
Matrix inversion
title The Role of the Group Generalized Inverse in the Theory of Finite Markov Chains
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A09%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Role%20of%20the%20Group%20Generalized%20Inverse%20in%20the%20Theory%20of%20Finite%20Markov%20Chains&rft.jtitle=SIAM%20review&rft.au=Meyer,%20Carl%20D.&rft.date=1975-07-01&rft.volume=17&rft.issue=3&rft.spage=443&rft.epage=464&rft.pages=443-464&rft.issn=0036-1445&rft.eissn=1095-7200&rft.coden=SIREAD&rft_id=info:doi/10.1137/1017044&rft_dat=%3Cjstor_proqu%3E2028885%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=926192809&rft_id=info:pmid/&rft_jstor_id=2028885&rfr_iscdi=true