Nonlinear Phenomena in a Column of Liquid in a Rotating Manometer

The stationary configuration of a column of liquid in a U-tube manometer rotating about an axis other than its axis of symmetry is predicted using a pressure distribution derived from Euler's equation and from the governing differential equation of motion. Nonlinear behavior is evident in that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM review 1990-12, Vol.32 (4), p.652-659
1. Verfasser: Kelly, S. Graham
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 659
container_issue 4
container_start_page 652
container_title SIAM review
container_volume 32
creator Kelly, S. Graham
description The stationary configuration of a column of liquid in a U-tube manometer rotating about an axis other than its axis of symmetry is predicted using a pressure distribution derived from Euler's equation and from the governing differential equation of motion. Nonlinear behavior is evident in that the stationary position of the liquid air interface will "jump" at critical values of the speed of rotation. A hysteresis effect is predicted in that the "jump" occurs at a different speed if the speed is being decreased rather than increased. Analysis defines regions of stable and unstable stationary positions.
doi_str_mv 10.1137/1032124
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_926132217</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2030898</jstor_id><sourcerecordid>2030898</sourcerecordid><originalsourceid>FETCH-LOGICAL-c271t-3907096ac217f908b42ad63b3a3636a09a3c1113fbda925c197b8eee7cedba1f3</originalsourceid><addsrcrecordid>eNo90E1PwzAMBuAIgcQYiD_AIeLCqWDHXdMcp4kvaXwIwbly2xQ6bcmWtAf-PZ06cbJsPbLlV4hLhFtE0ncIpFClR2KCYGaJVgDHYgJAWYJpOjsVZzGuYOhzMhMxf_Vu3TrLQb7_WOc31rFsnWS58Ot-46Rv5LLd9W09Tj98x13rvuUL73Fnw7k4aXgd7cWhTsXXw_3n4ilZvj0-L-bLpFIau4QMaDAZVwp1YyAvU8V1RiUxZZQxGKYKhweasmajZhUaXebWWl3ZumRsaCqux73b4He9jV2x8n1ww8nCqAxJDYsHdDOiKvgYg22KbWg3HH4LhGIfT3GIZ5BXo1zFzod_poAgNzn9ARMqXmo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>926132217</pqid></control><display><type>article</type><title>Nonlinear Phenomena in a Column of Liquid in a Rotating Manometer</title><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><source>LOCUS - SIAM's Online Journal Archive</source><creator>Kelly, S. Graham</creator><creatorcontrib>Kelly, S. Graham</creatorcontrib><description>The stationary configuration of a column of liquid in a U-tube manometer rotating about an axis other than its axis of symmetry is predicted using a pressure distribution derived from Euler's equation and from the governing differential equation of motion. Nonlinear behavior is evident in that the stationary position of the liquid air interface will "jump" at critical values of the speed of rotation. A hysteresis effect is predicted in that the "jump" occurs at a different speed if the speed is being decreased rather than increased. Analysis defines regions of stable and unstable stationary positions.</description><identifier>ISSN: 0036-1445</identifier><identifier>EISSN: 1095-7200</identifier><identifier>DOI: 10.1137/1032124</identifier><identifier>CODEN: SIREAD</identifier><language>eng</language><publisher>Philadelphia: The Society for Industrial and Applied Mathematics</publisher><subject>Angular velocity ; Axes of rotation ; Classroom Notes ; Classrooms ; Eulers equations ; Fluids ; Jumping ; Kinetics ; Legs ; Liquids ; Manometers ; Particle acceleration ; Pressure distribution ; Rotating liquids ; Shear stress ; Symmetry ; Velocity</subject><ispartof>SIAM review, 1990-12, Vol.32 (4), p.652-659</ispartof><rights>Copyright 1990 The Society for Industrial and Applied Mathematics</rights><rights>[Copyright] © 1990 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c271t-3907096ac217f908b42ad63b3a3636a09a3c1113fbda925c197b8eee7cedba1f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2030898$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2030898$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,3171,27903,27904,57996,58000,58229,58233</link.rule.ids></links><search><creatorcontrib>Kelly, S. Graham</creatorcontrib><title>Nonlinear Phenomena in a Column of Liquid in a Rotating Manometer</title><title>SIAM review</title><description>The stationary configuration of a column of liquid in a U-tube manometer rotating about an axis other than its axis of symmetry is predicted using a pressure distribution derived from Euler's equation and from the governing differential equation of motion. Nonlinear behavior is evident in that the stationary position of the liquid air interface will "jump" at critical values of the speed of rotation. A hysteresis effect is predicted in that the "jump" occurs at a different speed if the speed is being decreased rather than increased. Analysis defines regions of stable and unstable stationary positions.</description><subject>Angular velocity</subject><subject>Axes of rotation</subject><subject>Classroom Notes</subject><subject>Classrooms</subject><subject>Eulers equations</subject><subject>Fluids</subject><subject>Jumping</subject><subject>Kinetics</subject><subject>Legs</subject><subject>Liquids</subject><subject>Manometers</subject><subject>Particle acceleration</subject><subject>Pressure distribution</subject><subject>Rotating liquids</subject><subject>Shear stress</subject><subject>Symmetry</subject><subject>Velocity</subject><issn>0036-1445</issn><issn>1095-7200</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1990</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo90E1PwzAMBuAIgcQYiD_AIeLCqWDHXdMcp4kvaXwIwbly2xQ6bcmWtAf-PZ06cbJsPbLlV4hLhFtE0ncIpFClR2KCYGaJVgDHYgJAWYJpOjsVZzGuYOhzMhMxf_Vu3TrLQb7_WOc31rFsnWS58Ot-46Rv5LLd9W09Tj98x13rvuUL73Fnw7k4aXgd7cWhTsXXw_3n4ilZvj0-L-bLpFIau4QMaDAZVwp1YyAvU8V1RiUxZZQxGKYKhweasmajZhUaXebWWl3ZumRsaCqux73b4He9jV2x8n1ww8nCqAxJDYsHdDOiKvgYg22KbWg3HH4LhGIfT3GIZ5BXo1zFzod_poAgNzn9ARMqXmo</recordid><startdate>19901201</startdate><enddate>19901201</enddate><creator>Kelly, S. Graham</creator><general>The Society for Industrial and Applied Mathematics</general><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>19901201</creationdate><title>Nonlinear Phenomena in a Column of Liquid in a Rotating Manometer</title><author>Kelly, S. Graham</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c271t-3907096ac217f908b42ad63b3a3636a09a3c1113fbda925c197b8eee7cedba1f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1990</creationdate><topic>Angular velocity</topic><topic>Axes of rotation</topic><topic>Classroom Notes</topic><topic>Classrooms</topic><topic>Eulers equations</topic><topic>Fluids</topic><topic>Jumping</topic><topic>Kinetics</topic><topic>Legs</topic><topic>Liquids</topic><topic>Manometers</topic><topic>Particle acceleration</topic><topic>Pressure distribution</topic><topic>Rotating liquids</topic><topic>Shear stress</topic><topic>Symmetry</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kelly, S. Graham</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career &amp; Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kelly, S. Graham</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear Phenomena in a Column of Liquid in a Rotating Manometer</atitle><jtitle>SIAM review</jtitle><date>1990-12-01</date><risdate>1990</risdate><volume>32</volume><issue>4</issue><spage>652</spage><epage>659</epage><pages>652-659</pages><issn>0036-1445</issn><eissn>1095-7200</eissn><coden>SIREAD</coden><abstract>The stationary configuration of a column of liquid in a U-tube manometer rotating about an axis other than its axis of symmetry is predicted using a pressure distribution derived from Euler's equation and from the governing differential equation of motion. Nonlinear behavior is evident in that the stationary position of the liquid air interface will "jump" at critical values of the speed of rotation. A hysteresis effect is predicted in that the "jump" occurs at a different speed if the speed is being decreased rather than increased. Analysis defines regions of stable and unstable stationary positions.</abstract><cop>Philadelphia</cop><pub>The Society for Industrial and Applied Mathematics</pub><doi>10.1137/1032124</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-1445
ispartof SIAM review, 1990-12, Vol.32 (4), p.652-659
issn 0036-1445
1095-7200
language eng
recordid cdi_proquest_journals_926132217
source JSTOR Mathematics & Statistics; Jstor Complete Legacy; LOCUS - SIAM's Online Journal Archive
subjects Angular velocity
Axes of rotation
Classroom Notes
Classrooms
Eulers equations
Fluids
Jumping
Kinetics
Legs
Liquids
Manometers
Particle acceleration
Pressure distribution
Rotating liquids
Shear stress
Symmetry
Velocity
title Nonlinear Phenomena in a Column of Liquid in a Rotating Manometer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A35%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20Phenomena%20in%20a%20Column%20of%20Liquid%20in%20a%20Rotating%20Manometer&rft.jtitle=SIAM%20review&rft.au=Kelly,%20S.%20Graham&rft.date=1990-12-01&rft.volume=32&rft.issue=4&rft.spage=652&rft.epage=659&rft.pages=652-659&rft.issn=0036-1445&rft.eissn=1095-7200&rft.coden=SIREAD&rft_id=info:doi/10.1137/1032124&rft_dat=%3Cjstor_proqu%3E2030898%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=926132217&rft_id=info:pmid/&rft_jstor_id=2030898&rfr_iscdi=true