A Rigorous Numerical Method for the Global Analysis of Infinite-Dimensional Discrete Dynamical Systems

We present a numerical method to prove certain statements about the global dynamics of infinite-dimensional maps. The method combines set-oriented numerical tools for the computation of invariant sets and isolating neighborhoods, the Conley index theory, and analytic considerations. It not only allo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on applied dynamical systems 2004-01, Vol.3 (2), p.117-160
Hauptverfasser: Day, S., Junge, O., Mischaikow, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a numerical method to prove certain statements about the global dynamics of infinite-dimensional maps. The method combines set-oriented numerical tools for the computation of invariant sets and isolating neighborhoods, the Conley index theory, and analytic considerations. It not only allows for the detection of a certain dynamical behavior, but also for a precise computation of the corresponding invariant sets in phase space. As an example computation we show the existence of period points, connecting orbits, and chaotic dynamics in the Kot--Schaffer growth-dispersal model for plants.
ISSN:1536-0040
1536-0040
DOI:10.1137/030600210