A Rigorous Numerical Method for the Global Analysis of Infinite-Dimensional Discrete Dynamical Systems
We present a numerical method to prove certain statements about the global dynamics of infinite-dimensional maps. The method combines set-oriented numerical tools for the computation of invariant sets and isolating neighborhoods, the Conley index theory, and analytic considerations. It not only allo...
Gespeichert in:
Veröffentlicht in: | SIAM journal on applied dynamical systems 2004-01, Vol.3 (2), p.117-160 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a numerical method to prove certain statements about the global dynamics of infinite-dimensional maps. The method combines set-oriented numerical tools for the computation of invariant sets and isolating neighborhoods, the Conley index theory, and analytic considerations. It not only allows for the detection of a certain dynamical behavior, but also for a precise computation of the corresponding invariant sets in phase space. As an example computation we show the existence of period points, connecting orbits, and chaotic dynamics in the Kot--Schaffer growth-dispersal model for plants. |
---|---|
ISSN: | 1536-0040 1536-0040 |
DOI: | 10.1137/030600210 |