Generalized Hénon Map and Bifurcations of Homoclinic Tangencies
We study two-parameter bifurcation diagrams of a generalized Henon map (GHM) that is known to describe dynamics of iterated maps near homoclinic and heteroclinic tangencies. We prove the nondegeneracy of codimension (codim) 2 bifurcations of fixed points of the GHM analytically and compute its vario...
Gespeichert in:
Veröffentlicht in: | SIAM journal on applied dynamical systems 2005-01, Vol.4 (2), p.407-436 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 436 |
---|---|
container_issue | 2 |
container_start_page | 407 |
container_title | SIAM journal on applied dynamical systems |
container_volume | 4 |
creator | Gonchenko, V. S. Kuznetsov, Yu. A. Meijer, H. G. E. |
description | We study two-parameter bifurcation diagrams of a generalized Henon map (GHM) that is known to describe dynamics of iterated maps near homoclinic and heteroclinic tangencies. We prove the nondegeneracy of codimension (codim) 2 bifurcations of fixed points of the GHM analytically and compute its various global and local bifurcation curves numerically. Special attention is given to the interpretation of the results and their application to the analysis of bifurcations of the homoclinic tangency of a neutral saddle in two-parameter families of planar diffeomorphisms. In particular, an infinite cascade of homoclinic tangencies of neutral saddle cycles is shown to exist near the homoclinic tangency of the primary neutral saddle. |
doi_str_mv | 10.1137/04060487X |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_926057616</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2601231801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-438f2b020ba363390ece27d9c743dddde8f277d9339d4d48a7a02413a6a651403</originalsourceid><addsrcrecordid>eNpNUMtOwzAQtBBIlMKBP7C4cQisH7GTG1CVBqmIS5G4Ra7tIFepXezkAH_Ed_BjGBUh9jK7O6MZaRA6J3BFCJPXwEEAr-TLAZqQkokC8ufw336MTlLaABBJKZ2gm4X1NqrefViDm69PHzx-VDusvMF3rhujVoMLPuHQ4SZsg-6ddxqvlH-1XjubTtFRp_pkz35xip7v56tZUyyfFg-z22WhWS2HgrOqo2ugsFZMMFaD1ZZKU2vJmcljMy3znSnDDa-UVEA5YUooURIObIou9r67GN5Gm4Z2E8boc2RbUwGlFERk0eVepGNIKdqu3UW3VfG9JdD-9NP-9cO-AQV4VmU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>926057616</pqid></control><display><type>article</type><title>Generalized Hénon Map and Bifurcations of Homoclinic Tangencies</title><source>SIAM Journals Online</source><source>Business Source Complete</source><creator>Gonchenko, V. S. ; Kuznetsov, Yu. A. ; Meijer, H. G. E.</creator><creatorcontrib>Gonchenko, V. S. ; Kuznetsov, Yu. A. ; Meijer, H. G. E.</creatorcontrib><description>We study two-parameter bifurcation diagrams of a generalized Henon map (GHM) that is known to describe dynamics of iterated maps near homoclinic and heteroclinic tangencies. We prove the nondegeneracy of codimension (codim) 2 bifurcations of fixed points of the GHM analytically and compute its various global and local bifurcation curves numerically. Special attention is given to the interpretation of the results and their application to the analysis of bifurcations of the homoclinic tangency of a neutral saddle in two-parameter families of planar diffeomorphisms. In particular, an infinite cascade of homoclinic tangencies of neutral saddle cycles is shown to exist near the homoclinic tangency of the primary neutral saddle.</description><identifier>ISSN: 1536-0040</identifier><identifier>EISSN: 1536-0040</identifier><identifier>DOI: 10.1137/04060487X</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Applied mathematics ; Coordinate transformations ; Dynamical systems ; Eigenvalues ; Orbits ; System theory</subject><ispartof>SIAM journal on applied dynamical systems, 2005-01, Vol.4 (2), p.407-436</ispartof><rights>[Copyright] © 2005 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-438f2b020ba363390ece27d9c743dddde8f277d9339d4d48a7a02413a6a651403</citedby><cites>FETCH-LOGICAL-c397t-438f2b020ba363390ece27d9c743dddde8f277d9339d4d48a7a02413a6a651403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3171,27901,27902</link.rule.ids></links><search><creatorcontrib>Gonchenko, V. S.</creatorcontrib><creatorcontrib>Kuznetsov, Yu. A.</creatorcontrib><creatorcontrib>Meijer, H. G. E.</creatorcontrib><title>Generalized Hénon Map and Bifurcations of Homoclinic Tangencies</title><title>SIAM journal on applied dynamical systems</title><description>We study two-parameter bifurcation diagrams of a generalized Henon map (GHM) that is known to describe dynamics of iterated maps near homoclinic and heteroclinic tangencies. We prove the nondegeneracy of codimension (codim) 2 bifurcations of fixed points of the GHM analytically and compute its various global and local bifurcation curves numerically. Special attention is given to the interpretation of the results and their application to the analysis of bifurcations of the homoclinic tangency of a neutral saddle in two-parameter families of planar diffeomorphisms. In particular, an infinite cascade of homoclinic tangencies of neutral saddle cycles is shown to exist near the homoclinic tangency of the primary neutral saddle.</description><subject>Applied mathematics</subject><subject>Coordinate transformations</subject><subject>Dynamical systems</subject><subject>Eigenvalues</subject><subject>Orbits</subject><subject>System theory</subject><issn>1536-0040</issn><issn>1536-0040</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpNUMtOwzAQtBBIlMKBP7C4cQisH7GTG1CVBqmIS5G4Ra7tIFepXezkAH_Ed_BjGBUh9jK7O6MZaRA6J3BFCJPXwEEAr-TLAZqQkokC8ufw336MTlLaABBJKZ2gm4X1NqrefViDm69PHzx-VDusvMF3rhujVoMLPuHQ4SZsg-6ddxqvlH-1XjubTtFRp_pkz35xip7v56tZUyyfFg-z22WhWS2HgrOqo2ugsFZMMFaD1ZZKU2vJmcljMy3znSnDDa-UVEA5YUooURIObIou9r67GN5Gm4Z2E8boc2RbUwGlFERk0eVepGNIKdqu3UW3VfG9JdD-9NP-9cO-AQV4VmU</recordid><startdate>20050101</startdate><enddate>20050101</enddate><creator>Gonchenko, V. S.</creator><creator>Kuznetsov, Yu. A.</creator><creator>Meijer, H. G. E.</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20050101</creationdate><title>Generalized Hénon Map and Bifurcations of Homoclinic Tangencies</title><author>Gonchenko, V. S. ; Kuznetsov, Yu. A. ; Meijer, H. G. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-438f2b020ba363390ece27d9c743dddde8f277d9339d4d48a7a02413a6a651403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied mathematics</topic><topic>Coordinate transformations</topic><topic>Dynamical systems</topic><topic>Eigenvalues</topic><topic>Orbits</topic><topic>System theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gonchenko, V. S.</creatorcontrib><creatorcontrib>Kuznetsov, Yu. A.</creatorcontrib><creatorcontrib>Meijer, H. G. E.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on applied dynamical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gonchenko, V. S.</au><au>Kuznetsov, Yu. A.</au><au>Meijer, H. G. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized Hénon Map and Bifurcations of Homoclinic Tangencies</atitle><jtitle>SIAM journal on applied dynamical systems</jtitle><date>2005-01-01</date><risdate>2005</risdate><volume>4</volume><issue>2</issue><spage>407</spage><epage>436</epage><pages>407-436</pages><issn>1536-0040</issn><eissn>1536-0040</eissn><abstract>We study two-parameter bifurcation diagrams of a generalized Henon map (GHM) that is known to describe dynamics of iterated maps near homoclinic and heteroclinic tangencies. We prove the nondegeneracy of codimension (codim) 2 bifurcations of fixed points of the GHM analytically and compute its various global and local bifurcation curves numerically. Special attention is given to the interpretation of the results and their application to the analysis of bifurcations of the homoclinic tangency of a neutral saddle in two-parameter families of planar diffeomorphisms. In particular, an infinite cascade of homoclinic tangencies of neutral saddle cycles is shown to exist near the homoclinic tangency of the primary neutral saddle.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/04060487X</doi><tpages>30</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1536-0040 |
ispartof | SIAM journal on applied dynamical systems, 2005-01, Vol.4 (2), p.407-436 |
issn | 1536-0040 1536-0040 |
language | eng |
recordid | cdi_proquest_journals_926057616 |
source | SIAM Journals Online; Business Source Complete |
subjects | Applied mathematics Coordinate transformations Dynamical systems Eigenvalues Orbits System theory |
title | Generalized Hénon Map and Bifurcations of Homoclinic Tangencies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T20%3A35%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20H%C3%A9non%20Map%20and%20Bifurcations%20of%20Homoclinic%20Tangencies&rft.jtitle=SIAM%20journal%20on%20applied%20dynamical%20systems&rft.au=Gonchenko,%20V.%20S.&rft.date=2005-01-01&rft.volume=4&rft.issue=2&rft.spage=407&rft.epage=436&rft.pages=407-436&rft.issn=1536-0040&rft.eissn=1536-0040&rft_id=info:doi/10.1137/04060487X&rft_dat=%3Cproquest_cross%3E2601231801%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=926057616&rft_id=info:pmid/&rfr_iscdi=true |