Wide Sense Stationary Solutions of Linear Systems with Additive Noise
Let $z$ be a (wide sense) stationary process with spectral measure $F^z $, acting as noise on \[( * )\qquad \dot x = Ax + Bz,\quad y = Gx.\] The aim of this paper is to describe the set of stationary outputs $y$. A stationary solution $x$ is called hard if it satisfies (*) as a stochastic process, i...
Gespeichert in:
Veröffentlicht in: | SIAM journal on control and optimization 1983-05, Vol.21 (3), p.413-426 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 426 |
---|---|
container_issue | 3 |
container_start_page | 413 |
container_title | SIAM journal on control and optimization |
container_volume | 21 |
creator | Arnold, L. Wihstutz, V. |
description | Let $z$ be a (wide sense) stationary process with spectral measure $F^z $, acting as noise on \[( * )\qquad \dot x = Ax + Bz,\quad y = Gx.\] The aim of this paper is to describe the set of stationary outputs $y$. A stationary solution $x$ is called hard if it satisfies (*) as a stochastic process, its spectral measure $F^x $ then satisfies \[( * * )\qquad (i\lambda - A)dF^x (\lambda )(i\lambda - A)^ * = dF^z (\lambda ).\] Any solution of (**) is called a soft stationary solution of (*). If $i\lambda \in \sigma (A)$, $\lambda $ is called critical. For $B = G = I$, there exists a soft stationary solution if and only if there exists a hard stationary solution on the original probability space if and only if $(i\lambda - A)^{ - 1} \in L_2 (F^z )$ and ${\operatorname{image}}\Delta F^2 (\lambda ) \subset {\operatorname{image}}(i\lambda - A)$ for critical $\lambda $. The intuitive meaning of this condition is that the critical frequencies of the undisturbed system have to be missing in the noise spectrum in a certain sense. Otherwise we encounter resonance. The soft stationary solution is unique if and only if the hard stationary solution is unique on any probability space if and only if all $\operatorname{Re} \lambda _j (A) \ne 0$. The set of all stationary solutions is described. The results carry over to the observable case for general $C$. |
doi_str_mv | 10.1137/0321024 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_926030927</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2600968551</sourcerecordid><originalsourceid>FETCH-LOGICAL-c182t-f0c94f0f401d19f254ddf04be2ac8509eb73a5ae7e189b06d42f99cc6bfaed183</originalsourceid><addsrcrecordid>eNotUE1LAzEUDKJgreJfCF48rb6XZD9yLKV-wKKHKh6X7OYFU9rdmqRK_71b2svMHIYZZhi7RXhAlOUjSIEg1BmbIOg8K1FW52wCspAZoNCX7CrGFQAqhWrCFl_eEl9SH0dMJvmhN2HPl8N6d9CRD47XvicT-HIfE20i__Ppm8-s9cn_En8bfKRrduHMOtLNiafs82nxMX_J6vfn1_mszjqsRMocdFo5cArQonYiV9Y6UC0J01U5aGpLaXJDJWGlWyisEk7rritaZ8hiJafs7pi7DcPPjmJqVsMu9GNlo0UBErQoR9P90dSFIcZArtkGvxlXNQjN4aLmdJH8B8W5V-o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>926030927</pqid></control><display><type>article</type><title>Wide Sense Stationary Solutions of Linear Systems with Additive Noise</title><source>SIAM Journals Online</source><creator>Arnold, L. ; Wihstutz, V.</creator><creatorcontrib>Arnold, L. ; Wihstutz, V.</creatorcontrib><description>Let $z$ be a (wide sense) stationary process with spectral measure $F^z $, acting as noise on \[( * )\qquad \dot x = Ax + Bz,\quad y = Gx.\] The aim of this paper is to describe the set of stationary outputs $y$. A stationary solution $x$ is called hard if it satisfies (*) as a stochastic process, its spectral measure $F^x $ then satisfies \[( * * )\qquad (i\lambda - A)dF^x (\lambda )(i\lambda - A)^ * = dF^z (\lambda ).\] Any solution of (**) is called a soft stationary solution of (*). If $i\lambda \in \sigma (A)$, $\lambda $ is called critical. For $B = G = I$, there exists a soft stationary solution if and only if there exists a hard stationary solution on the original probability space if and only if $(i\lambda - A)^{ - 1} \in L_2 (F^z )$ and ${\operatorname{image}}\Delta F^2 (\lambda ) \subset {\operatorname{image}}(i\lambda - A)$ for critical $\lambda $. The intuitive meaning of this condition is that the critical frequencies of the undisturbed system have to be missing in the noise spectrum in a certain sense. Otherwise we encounter resonance. The soft stationary solution is unique if and only if the hard stationary solution is unique on any probability space if and only if all $\operatorname{Re} \lambda _j (A) \ne 0$. The set of all stationary solutions is described. The results carry over to the observable case for general $C$.</description><identifier>ISSN: 0363-0129</identifier><identifier>EISSN: 1095-7138</identifier><identifier>DOI: 10.1137/0321024</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Hilbert space ; Linear algebra ; Noise ; Stochastic models</subject><ispartof>SIAM journal on control and optimization, 1983-05, Vol.21 (3), p.413-426</ispartof><rights>[Copyright] © 1983 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c182t-f0c94f0f401d19f254ddf04be2ac8509eb73a5ae7e189b06d42f99cc6bfaed183</citedby><cites>FETCH-LOGICAL-c182t-f0c94f0f401d19f254ddf04be2ac8509eb73a5ae7e189b06d42f99cc6bfaed183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3170,27903,27904</link.rule.ids></links><search><creatorcontrib>Arnold, L.</creatorcontrib><creatorcontrib>Wihstutz, V.</creatorcontrib><title>Wide Sense Stationary Solutions of Linear Systems with Additive Noise</title><title>SIAM journal on control and optimization</title><description>Let $z$ be a (wide sense) stationary process with spectral measure $F^z $, acting as noise on \[( * )\qquad \dot x = Ax + Bz,\quad y = Gx.\] The aim of this paper is to describe the set of stationary outputs $y$. A stationary solution $x$ is called hard if it satisfies (*) as a stochastic process, its spectral measure $F^x $ then satisfies \[( * * )\qquad (i\lambda - A)dF^x (\lambda )(i\lambda - A)^ * = dF^z (\lambda ).\] Any solution of (**) is called a soft stationary solution of (*). If $i\lambda \in \sigma (A)$, $\lambda $ is called critical. For $B = G = I$, there exists a soft stationary solution if and only if there exists a hard stationary solution on the original probability space if and only if $(i\lambda - A)^{ - 1} \in L_2 (F^z )$ and ${\operatorname{image}}\Delta F^2 (\lambda ) \subset {\operatorname{image}}(i\lambda - A)$ for critical $\lambda $. The intuitive meaning of this condition is that the critical frequencies of the undisturbed system have to be missing in the noise spectrum in a certain sense. Otherwise we encounter resonance. The soft stationary solution is unique if and only if the hard stationary solution is unique on any probability space if and only if all $\operatorname{Re} \lambda _j (A) \ne 0$. The set of all stationary solutions is described. The results carry over to the observable case for general $C$.</description><subject>Hilbert space</subject><subject>Linear algebra</subject><subject>Noise</subject><subject>Stochastic models</subject><issn>0363-0129</issn><issn>1095-7138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1983</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotUE1LAzEUDKJgreJfCF48rb6XZD9yLKV-wKKHKh6X7OYFU9rdmqRK_71b2svMHIYZZhi7RXhAlOUjSIEg1BmbIOg8K1FW52wCspAZoNCX7CrGFQAqhWrCFl_eEl9SH0dMJvmhN2HPl8N6d9CRD47XvicT-HIfE20i__Ppm8-s9cn_En8bfKRrduHMOtLNiafs82nxMX_J6vfn1_mszjqsRMocdFo5cArQonYiV9Y6UC0J01U5aGpLaXJDJWGlWyisEk7rritaZ8hiJafs7pi7DcPPjmJqVsMu9GNlo0UBErQoR9P90dSFIcZArtkGvxlXNQjN4aLmdJH8B8W5V-o</recordid><startdate>19830501</startdate><enddate>19830501</enddate><creator>Arnold, L.</creator><creator>Wihstutz, V.</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>19830501</creationdate><title>Wide Sense Stationary Solutions of Linear Systems with Additive Noise</title><author>Arnold, L. ; Wihstutz, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c182t-f0c94f0f401d19f254ddf04be2ac8509eb73a5ae7e189b06d42f99cc6bfaed183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1983</creationdate><topic>Hilbert space</topic><topic>Linear algebra</topic><topic>Noise</topic><topic>Stochastic models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arnold, L.</creatorcontrib><creatorcontrib>Wihstutz, V.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career & Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on control and optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arnold, L.</au><au>Wihstutz, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wide Sense Stationary Solutions of Linear Systems with Additive Noise</atitle><jtitle>SIAM journal on control and optimization</jtitle><date>1983-05-01</date><risdate>1983</risdate><volume>21</volume><issue>3</issue><spage>413</spage><epage>426</epage><pages>413-426</pages><issn>0363-0129</issn><eissn>1095-7138</eissn><abstract>Let $z$ be a (wide sense) stationary process with spectral measure $F^z $, acting as noise on \[( * )\qquad \dot x = Ax + Bz,\quad y = Gx.\] The aim of this paper is to describe the set of stationary outputs $y$. A stationary solution $x$ is called hard if it satisfies (*) as a stochastic process, its spectral measure $F^x $ then satisfies \[( * * )\qquad (i\lambda - A)dF^x (\lambda )(i\lambda - A)^ * = dF^z (\lambda ).\] Any solution of (**) is called a soft stationary solution of (*). If $i\lambda \in \sigma (A)$, $\lambda $ is called critical. For $B = G = I$, there exists a soft stationary solution if and only if there exists a hard stationary solution on the original probability space if and only if $(i\lambda - A)^{ - 1} \in L_2 (F^z )$ and ${\operatorname{image}}\Delta F^2 (\lambda ) \subset {\operatorname{image}}(i\lambda - A)$ for critical $\lambda $. The intuitive meaning of this condition is that the critical frequencies of the undisturbed system have to be missing in the noise spectrum in a certain sense. Otherwise we encounter resonance. The soft stationary solution is unique if and only if the hard stationary solution is unique on any probability space if and only if all $\operatorname{Re} \lambda _j (A) \ne 0$. The set of all stationary solutions is described. The results carry over to the observable case for general $C$.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/0321024</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0363-0129 |
ispartof | SIAM journal on control and optimization, 1983-05, Vol.21 (3), p.413-426 |
issn | 0363-0129 1095-7138 |
language | eng |
recordid | cdi_proquest_journals_926030927 |
source | SIAM Journals Online |
subjects | Hilbert space Linear algebra Noise Stochastic models |
title | Wide Sense Stationary Solutions of Linear Systems with Additive Noise |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T22%3A20%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wide%20Sense%20Stationary%20Solutions%20of%20Linear%20Systems%20with%20Additive%20Noise&rft.jtitle=SIAM%20journal%20on%20control%20and%20optimization&rft.au=Arnold,%20L.&rft.date=1983-05-01&rft.volume=21&rft.issue=3&rft.spage=413&rft.epage=426&rft.pages=413-426&rft.issn=0363-0129&rft.eissn=1095-7138&rft_id=info:doi/10.1137/0321024&rft_dat=%3Cproquest_cross%3E2600968551%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=926030927&rft_id=info:pmid/&rfr_iscdi=true |