Local stability and optimality in continuous games
We study games with continuous payoff functions $J_i (\sigma _1 , \cdots ,\sigma _N )$, $i = 1, \cdots ,N$, where a strategy for player $i$ is to choose a real number $\sigma _i $ and is pure. Small adjustments by coalitions and responses by other coalitions are analyzed on the basis that one coalit...
Gespeichert in:
Veröffentlicht in: | SIAM journal on control and optimization 1984-03, Vol.22 (2), p.181-198 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 198 |
---|---|
container_issue | 2 |
container_start_page | 181 |
container_title | SIAM journal on control and optimization |
container_volume | 22 |
creator | GATES, D. J WESTCOTT, M |
description | We study games with continuous payoff functions $J_i (\sigma _1 , \cdots ,\sigma _N )$, $i = 1, \cdots ,N$, where a strategy for player $i$ is to choose a real number $\sigma _i $ and is pure. Small adjustments by coalitions and responses by other coalitions are analyzed on the basis that one coalition may discipline another if the latter makes an adjustment which is favorable to itself. This concept provides a natural definition for defensive coalitions and for optimality based on a pair of coalitions which are both defensible. More general optimal states for the whole game, under limited information conditions, contain all the well-known optima and are closely related to the limiting states of an explicit time-dependent adjustment process. The optima are supported by the data of Fouraker and Siegel and the sequences of adjustments in their experiments are clarified. |
doi_str_mv | 10.1137/0322014 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_926029423</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2600960101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c241t-9dbb8e13f0e1bb2ad6e3951110e4970bb34efcf48cca2ece0583ec4755ea42853</originalsourceid><addsrcrecordid>eNo9kE9LxDAQxYMouK7iVygieKrOTJJtc5TFf1DwoueSpFPp0m3WpD3st7e6i6fhwY_33jwhrhHuEWXxAJIIUJ2IBYLReYGyPBULkCuZA5I5FxcpbWAmFKqFoCp422dptK7ru3Gf2aHJwm7stvZPdkPmwzB2wxSmlH3ZLadLcdbaPvHV8S7F5_PTx_o1r95f3taPVe5J4ZibxrmSUbbA6BzZZsXSaEQEVqYA56Ti1req9N4SewZdSvaq0JqtolLLpbg5-O5i-J44jfUmTHGYI2tDKyCjSM7Q3QHyMaQUua13ce4e9zVC_btHfdxjJm-PdjbNL7fRDr5L_7gh0IpI_gAHm12Z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>926029423</pqid></control><display><type>article</type><title>Local stability and optimality in continuous games</title><source>SIAM Journals Online</source><creator>GATES, D. J ; WESTCOTT, M</creator><creatorcontrib>GATES, D. J ; WESTCOTT, M</creatorcontrib><description>We study games with continuous payoff functions $J_i (\sigma _1 , \cdots ,\sigma _N )$, $i = 1, \cdots ,N$, where a strategy for player $i$ is to choose a real number $\sigma _i $ and is pure. Small adjustments by coalitions and responses by other coalitions are analyzed on the basis that one coalition may discipline another if the latter makes an adjustment which is favorable to itself. This concept provides a natural definition for defensive coalitions and for optimality based on a pair of coalitions which are both defensible. More general optimal states for the whole game, under limited information conditions, contain all the well-known optima and are closely related to the limiting states of an explicit time-dependent adjustment process. The optima are supported by the data of Fouraker and Siegel and the sequences of adjustments in their experiments are clarified.</description><identifier>ISSN: 0363-0129</identifier><identifier>EISSN: 1095-7138</identifier><identifier>DOI: 10.1137/0322014</identifier><identifier>CODEN: SJCODC</identifier><language>eng</language><publisher>Philadelphia, PA: Society for Industrial and Applied Mathematics</publisher><subject>Applied sciences ; Bargaining ; Decision theory. Utility theory ; Discipline ; Equilibrium ; Exact sciences and technology ; Game theory ; Operational research and scientific management ; Operational research. Management science</subject><ispartof>SIAM journal on control and optimization, 1984-03, Vol.22 (2), p.181-198</ispartof><rights>1985 INIST-CNRS</rights><rights>[Copyright] © 1984 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c241t-9dbb8e13f0e1bb2ad6e3951110e4970bb34efcf48cca2ece0583ec4755ea42853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,3185,27928,27929</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=9205422$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>GATES, D. J</creatorcontrib><creatorcontrib>WESTCOTT, M</creatorcontrib><title>Local stability and optimality in continuous games</title><title>SIAM journal on control and optimization</title><description>We study games with continuous payoff functions $J_i (\sigma _1 , \cdots ,\sigma _N )$, $i = 1, \cdots ,N$, where a strategy for player $i$ is to choose a real number $\sigma _i $ and is pure. Small adjustments by coalitions and responses by other coalitions are analyzed on the basis that one coalition may discipline another if the latter makes an adjustment which is favorable to itself. This concept provides a natural definition for defensive coalitions and for optimality based on a pair of coalitions which are both defensible. More general optimal states for the whole game, under limited information conditions, contain all the well-known optima and are closely related to the limiting states of an explicit time-dependent adjustment process. The optima are supported by the data of Fouraker and Siegel and the sequences of adjustments in their experiments are clarified.</description><subject>Applied sciences</subject><subject>Bargaining</subject><subject>Decision theory. Utility theory</subject><subject>Discipline</subject><subject>Equilibrium</subject><subject>Exact sciences and technology</subject><subject>Game theory</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><issn>0363-0129</issn><issn>1095-7138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1984</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo9kE9LxDAQxYMouK7iVygieKrOTJJtc5TFf1DwoueSpFPp0m3WpD3st7e6i6fhwY_33jwhrhHuEWXxAJIIUJ2IBYLReYGyPBULkCuZA5I5FxcpbWAmFKqFoCp422dptK7ru3Gf2aHJwm7stvZPdkPmwzB2wxSmlH3ZLadLcdbaPvHV8S7F5_PTx_o1r95f3taPVe5J4ZibxrmSUbbA6BzZZsXSaEQEVqYA56Ti1req9N4SewZdSvaq0JqtolLLpbg5-O5i-J44jfUmTHGYI2tDKyCjSM7Q3QHyMaQUua13ce4e9zVC_btHfdxjJm-PdjbNL7fRDr5L_7gh0IpI_gAHm12Z</recordid><startdate>19840301</startdate><enddate>19840301</enddate><creator>GATES, D. J</creator><creator>WESTCOTT, M</creator><general>Society for Industrial and Applied Mathematics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>19840301</creationdate><title>Local stability and optimality in continuous games</title><author>GATES, D. J ; WESTCOTT, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c241t-9dbb8e13f0e1bb2ad6e3951110e4970bb34efcf48cca2ece0583ec4755ea42853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1984</creationdate><topic>Applied sciences</topic><topic>Bargaining</topic><topic>Decision theory. Utility theory</topic><topic>Discipline</topic><topic>Equilibrium</topic><topic>Exact sciences and technology</topic><topic>Game theory</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>GATES, D. J</creatorcontrib><creatorcontrib>WESTCOTT, M</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career & Technical Education Database</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>SIAM journal on control and optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>GATES, D. J</au><au>WESTCOTT, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local stability and optimality in continuous games</atitle><jtitle>SIAM journal on control and optimization</jtitle><date>1984-03-01</date><risdate>1984</risdate><volume>22</volume><issue>2</issue><spage>181</spage><epage>198</epage><pages>181-198</pages><issn>0363-0129</issn><eissn>1095-7138</eissn><coden>SJCODC</coden><abstract>We study games with continuous payoff functions $J_i (\sigma _1 , \cdots ,\sigma _N )$, $i = 1, \cdots ,N$, where a strategy for player $i$ is to choose a real number $\sigma _i $ and is pure. Small adjustments by coalitions and responses by other coalitions are analyzed on the basis that one coalition may discipline another if the latter makes an adjustment which is favorable to itself. This concept provides a natural definition for defensive coalitions and for optimality based on a pair of coalitions which are both defensible. More general optimal states for the whole game, under limited information conditions, contain all the well-known optima and are closely related to the limiting states of an explicit time-dependent adjustment process. The optima are supported by the data of Fouraker and Siegel and the sequences of adjustments in their experiments are clarified.</abstract><cop>Philadelphia, PA</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/0322014</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0363-0129 |
ispartof | SIAM journal on control and optimization, 1984-03, Vol.22 (2), p.181-198 |
issn | 0363-0129 1095-7138 |
language | eng |
recordid | cdi_proquest_journals_926029423 |
source | SIAM Journals Online |
subjects | Applied sciences Bargaining Decision theory. Utility theory Discipline Equilibrium Exact sciences and technology Game theory Operational research and scientific management Operational research. Management science |
title | Local stability and optimality in continuous games |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T18%3A21%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20stability%20and%20optimality%20in%20continuous%20games&rft.jtitle=SIAM%20journal%20on%20control%20and%20optimization&rft.au=GATES,%20D.%20J&rft.date=1984-03-01&rft.volume=22&rft.issue=2&rft.spage=181&rft.epage=198&rft.pages=181-198&rft.issn=0363-0129&rft.eissn=1095-7138&rft.coden=SJCODC&rft_id=info:doi/10.1137/0322014&rft_dat=%3Cproquest_cross%3E2600960101%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=926029423&rft_id=info:pmid/&rfr_iscdi=true |