Molecular dynamics of single-particle impacts predicts phase diagrams for large scale pattern formation

Energetic particle irradiation can cause surface ultra-smoothening, self-organized nanoscale pattern formation or degradation of the structural integrity of nuclear reactor components. A fundamental understanding of the mechanisms governing the selection among these outcomes has been elusive. Here w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2011-04, Vol.2 (1), p.276, Article 276
Hauptverfasser: Norris, Scott A., Samela, Juha, Bukonte, Laura, Backman, Marie, Djurabekova, Flyura, Nordlund, Kai, Madi, Charbel S., Brenner, Michael P., Aziz, Michael J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 276
container_title Nature communications
container_volume 2
creator Norris, Scott A.
Samela, Juha
Bukonte, Laura
Backman, Marie
Djurabekova, Flyura
Nordlund, Kai
Madi, Charbel S.
Brenner, Michael P.
Aziz, Michael J.
description Energetic particle irradiation can cause surface ultra-smoothening, self-organized nanoscale pattern formation or degradation of the structural integrity of nuclear reactor components. A fundamental understanding of the mechanisms governing the selection among these outcomes has been elusive. Here we predict the mechanism governing the transition from pattern formation to flatness using only parameter-free molecular dynamics simulations of single-ion impacts as input into a multiscale analysis, obtaining good agreement with experiment. Our results overturn the paradigm attributing these phenomena to the removal of target atoms via sputter erosion: the mechanism dominating both stability and instability is the impact-induced redistribution of target atoms that are not sputtered away, with erosive effects being essentially irrelevant. We discuss the potential implications for the formation of a mysterious nanoscale topography, leading to surface degradation, of tungsten plasma-facing fusion reactor walls. Consideration of impact-induced redistribution processes may lead to a new design criterion for stability under irradiation. Energetic particle irradiation can lead to surface smoothing, pattern formation or degradation of the structural integrity of nuclear reactor components. Here, molecular dynamics simulations are used to study the mechanisms that determine the transitions between these disparate processes.
doi_str_mv 10.1038/ncomms1280
format Article
fullrecord <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_proquest_journals_925973553</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2600881881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-67affbb488a993d2914d9f1aa49294863a91a07d53b8468001c364820de03dd13</originalsourceid><addsrcrecordid>eNptkEtPwzAQhC0EolXphR-ALI6ggF9J7SOqeElFXOAcbWwnpIrjYCeH_ntSWigH9rKj3U8z0iB0TskNJVzetto7FymT5AhNGRE0oQvGj__oCZrHuCbjcEWlEKdowmhKUsHZFFUvvrF6aCBgs2nB1TpiX-JYt1Vjkw5CX-vG4tp1oPuIu2BN_S0-IFpsaqgCuIhLH_DoUVkcNYx8B31vQ7u9O-hr356hkxKaaOf7PUPvD_dvy6dk9fr4vLxbJVqktE-yBZRlUQgpQSlumKLCqJICCMWUkBkHRYEsTMoLKTJJCNU8E5IRYwk3hvIZutz5dsF_Djb2-doPoR0jc8VSteBpykfoagfp4GMMtsy7UDsIm5ySfNtqfmh1hC_2jkPhrPlFfzocgesdEMdXW9lwiPzH7gspRYKu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>925973553</pqid></control><display><type>article</type><title>Molecular dynamics of single-particle impacts predicts phase diagrams for large scale pattern formation</title><source>Springer Nature OA Free Journals</source><creator>Norris, Scott A. ; Samela, Juha ; Bukonte, Laura ; Backman, Marie ; Djurabekova, Flyura ; Nordlund, Kai ; Madi, Charbel S. ; Brenner, Michael P. ; Aziz, Michael J.</creator><creatorcontrib>Norris, Scott A. ; Samela, Juha ; Bukonte, Laura ; Backman, Marie ; Djurabekova, Flyura ; Nordlund, Kai ; Madi, Charbel S. ; Brenner, Michael P. ; Aziz, Michael J.</creatorcontrib><description>Energetic particle irradiation can cause surface ultra-smoothening, self-organized nanoscale pattern formation or degradation of the structural integrity of nuclear reactor components. A fundamental understanding of the mechanisms governing the selection among these outcomes has been elusive. Here we predict the mechanism governing the transition from pattern formation to flatness using only parameter-free molecular dynamics simulations of single-ion impacts as input into a multiscale analysis, obtaining good agreement with experiment. Our results overturn the paradigm attributing these phenomena to the removal of target atoms via sputter erosion: the mechanism dominating both stability and instability is the impact-induced redistribution of target atoms that are not sputtered away, with erosive effects being essentially irrelevant. We discuss the potential implications for the formation of a mysterious nanoscale topography, leading to surface degradation, of tungsten plasma-facing fusion reactor walls. Consideration of impact-induced redistribution processes may lead to a new design criterion for stability under irradiation. Energetic particle irradiation can lead to surface smoothing, pattern formation or degradation of the structural integrity of nuclear reactor components. Here, molecular dynamics simulations are used to study the mechanisms that determine the transitions between these disparate processes.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms1280</identifier><identifier>PMID: 21505432</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/119 ; 639/638/563/981 ; Energy Transfer ; Humanities and Social Sciences ; Ions - chemistry ; Models, Chemical ; Molecular Dynamics Simulation ; multidisciplinary ; Nanostructures ; Nuclear Reactors - instrumentation ; Radiation, Ionizing ; Science ; Science (multidisciplinary) ; Surface Properties</subject><ispartof>Nature communications, 2011-04, Vol.2 (1), p.276, Article 276</ispartof><rights>Springer Nature Limited 2011</rights><rights>Copyright Nature Publishing Group Apr 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-67affbb488a993d2914d9f1aa49294863a91a07d53b8468001c364820de03dd13</citedby><cites>FETCH-LOGICAL-c451t-67affbb488a993d2914d9f1aa49294863a91a07d53b8468001c364820de03dd13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/ncomms1280$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://doi.org/10.1038/ncomms1280$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41096,42165,51551</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.1038/ncomms1280$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21505432$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Norris, Scott A.</creatorcontrib><creatorcontrib>Samela, Juha</creatorcontrib><creatorcontrib>Bukonte, Laura</creatorcontrib><creatorcontrib>Backman, Marie</creatorcontrib><creatorcontrib>Djurabekova, Flyura</creatorcontrib><creatorcontrib>Nordlund, Kai</creatorcontrib><creatorcontrib>Madi, Charbel S.</creatorcontrib><creatorcontrib>Brenner, Michael P.</creatorcontrib><creatorcontrib>Aziz, Michael J.</creatorcontrib><title>Molecular dynamics of single-particle impacts predicts phase diagrams for large scale pattern formation</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Energetic particle irradiation can cause surface ultra-smoothening, self-organized nanoscale pattern formation or degradation of the structural integrity of nuclear reactor components. A fundamental understanding of the mechanisms governing the selection among these outcomes has been elusive. Here we predict the mechanism governing the transition from pattern formation to flatness using only parameter-free molecular dynamics simulations of single-ion impacts as input into a multiscale analysis, obtaining good agreement with experiment. Our results overturn the paradigm attributing these phenomena to the removal of target atoms via sputter erosion: the mechanism dominating both stability and instability is the impact-induced redistribution of target atoms that are not sputtered away, with erosive effects being essentially irrelevant. We discuss the potential implications for the formation of a mysterious nanoscale topography, leading to surface degradation, of tungsten plasma-facing fusion reactor walls. Consideration of impact-induced redistribution processes may lead to a new design criterion for stability under irradiation. Energetic particle irradiation can lead to surface smoothing, pattern formation or degradation of the structural integrity of nuclear reactor components. Here, molecular dynamics simulations are used to study the mechanisms that determine the transitions between these disparate processes.</description><subject>639/301/119</subject><subject>639/638/563/981</subject><subject>Energy Transfer</subject><subject>Humanities and Social Sciences</subject><subject>Ions - chemistry</subject><subject>Models, Chemical</subject><subject>Molecular Dynamics Simulation</subject><subject>multidisciplinary</subject><subject>Nanostructures</subject><subject>Nuclear Reactors - instrumentation</subject><subject>Radiation, Ionizing</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Surface Properties</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNptkEtPwzAQhC0EolXphR-ALI6ggF9J7SOqeElFXOAcbWwnpIrjYCeH_ntSWigH9rKj3U8z0iB0TskNJVzetto7FymT5AhNGRE0oQvGj__oCZrHuCbjcEWlEKdowmhKUsHZFFUvvrF6aCBgs2nB1TpiX-JYt1Vjkw5CX-vG4tp1oPuIu2BN_S0-IFpsaqgCuIhLH_DoUVkcNYx8B31vQ7u9O-hr356hkxKaaOf7PUPvD_dvy6dk9fr4vLxbJVqktE-yBZRlUQgpQSlumKLCqJICCMWUkBkHRYEsTMoLKTJJCNU8E5IRYwk3hvIZutz5dsF_Djb2-doPoR0jc8VSteBpykfoagfp4GMMtsy7UDsIm5ySfNtqfmh1hC_2jkPhrPlFfzocgesdEMdXW9lwiPzH7gspRYKu</recordid><startdate>20110412</startdate><enddate>20110412</enddate><creator>Norris, Scott A.</creator><creator>Samela, Juha</creator><creator>Bukonte, Laura</creator><creator>Backman, Marie</creator><creator>Djurabekova, Flyura</creator><creator>Nordlund, Kai</creator><creator>Madi, Charbel S.</creator><creator>Brenner, Michael P.</creator><creator>Aziz, Michael J.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope></search><sort><creationdate>20110412</creationdate><title>Molecular dynamics of single-particle impacts predicts phase diagrams for large scale pattern formation</title><author>Norris, Scott A. ; Samela, Juha ; Bukonte, Laura ; Backman, Marie ; Djurabekova, Flyura ; Nordlund, Kai ; Madi, Charbel S. ; Brenner, Michael P. ; Aziz, Michael J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-67affbb488a993d2914d9f1aa49294863a91a07d53b8468001c364820de03dd13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>639/301/119</topic><topic>639/638/563/981</topic><topic>Energy Transfer</topic><topic>Humanities and Social Sciences</topic><topic>Ions - chemistry</topic><topic>Models, Chemical</topic><topic>Molecular Dynamics Simulation</topic><topic>multidisciplinary</topic><topic>Nanostructures</topic><topic>Nuclear Reactors - instrumentation</topic><topic>Radiation, Ionizing</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Norris, Scott A.</creatorcontrib><creatorcontrib>Samela, Juha</creatorcontrib><creatorcontrib>Bukonte, Laura</creatorcontrib><creatorcontrib>Backman, Marie</creatorcontrib><creatorcontrib>Djurabekova, Flyura</creatorcontrib><creatorcontrib>Nordlund, Kai</creatorcontrib><creatorcontrib>Madi, Charbel S.</creatorcontrib><creatorcontrib>Brenner, Michael P.</creatorcontrib><creatorcontrib>Aziz, Michael J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Norris, Scott A.</au><au>Samela, Juha</au><au>Bukonte, Laura</au><au>Backman, Marie</au><au>Djurabekova, Flyura</au><au>Nordlund, Kai</au><au>Madi, Charbel S.</au><au>Brenner, Michael P.</au><au>Aziz, Michael J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular dynamics of single-particle impacts predicts phase diagrams for large scale pattern formation</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2011-04-12</date><risdate>2011</risdate><volume>2</volume><issue>1</issue><spage>276</spage><pages>276-</pages><artnum>276</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Energetic particle irradiation can cause surface ultra-smoothening, self-organized nanoscale pattern formation or degradation of the structural integrity of nuclear reactor components. A fundamental understanding of the mechanisms governing the selection among these outcomes has been elusive. Here we predict the mechanism governing the transition from pattern formation to flatness using only parameter-free molecular dynamics simulations of single-ion impacts as input into a multiscale analysis, obtaining good agreement with experiment. Our results overturn the paradigm attributing these phenomena to the removal of target atoms via sputter erosion: the mechanism dominating both stability and instability is the impact-induced redistribution of target atoms that are not sputtered away, with erosive effects being essentially irrelevant. We discuss the potential implications for the formation of a mysterious nanoscale topography, leading to surface degradation, of tungsten plasma-facing fusion reactor walls. Consideration of impact-induced redistribution processes may lead to a new design criterion for stability under irradiation. Energetic particle irradiation can lead to surface smoothing, pattern formation or degradation of the structural integrity of nuclear reactor components. Here, molecular dynamics simulations are used to study the mechanisms that determine the transitions between these disparate processes.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>21505432</pmid><doi>10.1038/ncomms1280</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2041-1723
ispartof Nature communications, 2011-04, Vol.2 (1), p.276, Article 276
issn 2041-1723
2041-1723
language eng
recordid cdi_proquest_journals_925973553
source Springer Nature OA Free Journals
subjects 639/301/119
639/638/563/981
Energy Transfer
Humanities and Social Sciences
Ions - chemistry
Models, Chemical
Molecular Dynamics Simulation
multidisciplinary
Nanostructures
Nuclear Reactors - instrumentation
Radiation, Ionizing
Science
Science (multidisciplinary)
Surface Properties
title Molecular dynamics of single-particle impacts predicts phase diagrams for large scale pattern formation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T02%3A34%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20dynamics%20of%20single-particle%20impacts%20predicts%20phase%20diagrams%20for%20large%20scale%20pattern%20formation&rft.jtitle=Nature%20communications&rft.au=Norris,%20Scott%20A.&rft.date=2011-04-12&rft.volume=2&rft.issue=1&rft.spage=276&rft.pages=276-&rft.artnum=276&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms1280&rft_dat=%3Cproquest_C6C%3E2600881881%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=925973553&rft_id=info:pmid/21505432&rfr_iscdi=true