Molecular dynamics of single-particle impacts predicts phase diagrams for large scale pattern formation
Energetic particle irradiation can cause surface ultra-smoothening, self-organized nanoscale pattern formation or degradation of the structural integrity of nuclear reactor components. A fundamental understanding of the mechanisms governing the selection among these outcomes has been elusive. Here w...
Gespeichert in:
Veröffentlicht in: | Nature communications 2011-04, Vol.2 (1), p.276, Article 276 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 276 |
container_title | Nature communications |
container_volume | 2 |
creator | Norris, Scott A. Samela, Juha Bukonte, Laura Backman, Marie Djurabekova, Flyura Nordlund, Kai Madi, Charbel S. Brenner, Michael P. Aziz, Michael J. |
description | Energetic particle irradiation can cause surface ultra-smoothening, self-organized nanoscale pattern formation or degradation of the structural integrity of nuclear reactor components. A fundamental understanding of the mechanisms governing the selection among these outcomes has been elusive. Here we predict the mechanism governing the transition from pattern formation to flatness using only parameter-free molecular dynamics simulations of single-ion impacts as input into a multiscale analysis, obtaining good agreement with experiment. Our results overturn the paradigm attributing these phenomena to the removal of target atoms via sputter erosion: the mechanism dominating both stability and instability is the impact-induced redistribution of target atoms that are not sputtered away, with erosive effects being essentially irrelevant. We discuss the potential implications for the formation of a mysterious nanoscale topography, leading to surface degradation, of tungsten plasma-facing fusion reactor walls. Consideration of impact-induced redistribution processes may lead to a new design criterion for stability under irradiation.
Energetic particle irradiation can lead to surface smoothing, pattern formation or degradation of the structural integrity of nuclear reactor components. Here, molecular dynamics simulations are used to study the mechanisms that determine the transitions between these disparate processes. |
doi_str_mv | 10.1038/ncomms1280 |
format | Article |
fullrecord | <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_proquest_journals_925973553</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2600881881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-67affbb488a993d2914d9f1aa49294863a91a07d53b8468001c364820de03dd13</originalsourceid><addsrcrecordid>eNptkEtPwzAQhC0EolXphR-ALI6ggF9J7SOqeElFXOAcbWwnpIrjYCeH_ntSWigH9rKj3U8z0iB0TskNJVzetto7FymT5AhNGRE0oQvGj__oCZrHuCbjcEWlEKdowmhKUsHZFFUvvrF6aCBgs2nB1TpiX-JYt1Vjkw5CX-vG4tp1oPuIu2BN_S0-IFpsaqgCuIhLH_DoUVkcNYx8B31vQ7u9O-hr356hkxKaaOf7PUPvD_dvy6dk9fr4vLxbJVqktE-yBZRlUQgpQSlumKLCqJICCMWUkBkHRYEsTMoLKTJJCNU8E5IRYwk3hvIZutz5dsF_Djb2-doPoR0jc8VSteBpykfoagfp4GMMtsy7UDsIm5ySfNtqfmh1hC_2jkPhrPlFfzocgesdEMdXW9lwiPzH7gspRYKu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>925973553</pqid></control><display><type>article</type><title>Molecular dynamics of single-particle impacts predicts phase diagrams for large scale pattern formation</title><source>Springer Nature OA Free Journals</source><creator>Norris, Scott A. ; Samela, Juha ; Bukonte, Laura ; Backman, Marie ; Djurabekova, Flyura ; Nordlund, Kai ; Madi, Charbel S. ; Brenner, Michael P. ; Aziz, Michael J.</creator><creatorcontrib>Norris, Scott A. ; Samela, Juha ; Bukonte, Laura ; Backman, Marie ; Djurabekova, Flyura ; Nordlund, Kai ; Madi, Charbel S. ; Brenner, Michael P. ; Aziz, Michael J.</creatorcontrib><description>Energetic particle irradiation can cause surface ultra-smoothening, self-organized nanoscale pattern formation or degradation of the structural integrity of nuclear reactor components. A fundamental understanding of the mechanisms governing the selection among these outcomes has been elusive. Here we predict the mechanism governing the transition from pattern formation to flatness using only parameter-free molecular dynamics simulations of single-ion impacts as input into a multiscale analysis, obtaining good agreement with experiment. Our results overturn the paradigm attributing these phenomena to the removal of target atoms via sputter erosion: the mechanism dominating both stability and instability is the impact-induced redistribution of target atoms that are not sputtered away, with erosive effects being essentially irrelevant. We discuss the potential implications for the formation of a mysterious nanoscale topography, leading to surface degradation, of tungsten plasma-facing fusion reactor walls. Consideration of impact-induced redistribution processes may lead to a new design criterion for stability under irradiation.
Energetic particle irradiation can lead to surface smoothing, pattern formation or degradation of the structural integrity of nuclear reactor components. Here, molecular dynamics simulations are used to study the mechanisms that determine the transitions between these disparate processes.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/ncomms1280</identifier><identifier>PMID: 21505432</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/119 ; 639/638/563/981 ; Energy Transfer ; Humanities and Social Sciences ; Ions - chemistry ; Models, Chemical ; Molecular Dynamics Simulation ; multidisciplinary ; Nanostructures ; Nuclear Reactors - instrumentation ; Radiation, Ionizing ; Science ; Science (multidisciplinary) ; Surface Properties</subject><ispartof>Nature communications, 2011-04, Vol.2 (1), p.276, Article 276</ispartof><rights>Springer Nature Limited 2011</rights><rights>Copyright Nature Publishing Group Apr 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-67affbb488a993d2914d9f1aa49294863a91a07d53b8468001c364820de03dd13</citedby><cites>FETCH-LOGICAL-c451t-67affbb488a993d2914d9f1aa49294863a91a07d53b8468001c364820de03dd13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/ncomms1280$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://doi.org/10.1038/ncomms1280$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41096,42165,51551</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.1038/ncomms1280$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21505432$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Norris, Scott A.</creatorcontrib><creatorcontrib>Samela, Juha</creatorcontrib><creatorcontrib>Bukonte, Laura</creatorcontrib><creatorcontrib>Backman, Marie</creatorcontrib><creatorcontrib>Djurabekova, Flyura</creatorcontrib><creatorcontrib>Nordlund, Kai</creatorcontrib><creatorcontrib>Madi, Charbel S.</creatorcontrib><creatorcontrib>Brenner, Michael P.</creatorcontrib><creatorcontrib>Aziz, Michael J.</creatorcontrib><title>Molecular dynamics of single-particle impacts predicts phase diagrams for large scale pattern formation</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Energetic particle irradiation can cause surface ultra-smoothening, self-organized nanoscale pattern formation or degradation of the structural integrity of nuclear reactor components. A fundamental understanding of the mechanisms governing the selection among these outcomes has been elusive. Here we predict the mechanism governing the transition from pattern formation to flatness using only parameter-free molecular dynamics simulations of single-ion impacts as input into a multiscale analysis, obtaining good agreement with experiment. Our results overturn the paradigm attributing these phenomena to the removal of target atoms via sputter erosion: the mechanism dominating both stability and instability is the impact-induced redistribution of target atoms that are not sputtered away, with erosive effects being essentially irrelevant. We discuss the potential implications for the formation of a mysterious nanoscale topography, leading to surface degradation, of tungsten plasma-facing fusion reactor walls. Consideration of impact-induced redistribution processes may lead to a new design criterion for stability under irradiation.
Energetic particle irradiation can lead to surface smoothing, pattern formation or degradation of the structural integrity of nuclear reactor components. Here, molecular dynamics simulations are used to study the mechanisms that determine the transitions between these disparate processes.</description><subject>639/301/119</subject><subject>639/638/563/981</subject><subject>Energy Transfer</subject><subject>Humanities and Social Sciences</subject><subject>Ions - chemistry</subject><subject>Models, Chemical</subject><subject>Molecular Dynamics Simulation</subject><subject>multidisciplinary</subject><subject>Nanostructures</subject><subject>Nuclear Reactors - instrumentation</subject><subject>Radiation, Ionizing</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Surface Properties</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNptkEtPwzAQhC0EolXphR-ALI6ggF9J7SOqeElFXOAcbWwnpIrjYCeH_ntSWigH9rKj3U8z0iB0TskNJVzetto7FymT5AhNGRE0oQvGj__oCZrHuCbjcEWlEKdowmhKUsHZFFUvvrF6aCBgs2nB1TpiX-JYt1Vjkw5CX-vG4tp1oPuIu2BN_S0-IFpsaqgCuIhLH_DoUVkcNYx8B31vQ7u9O-hr356hkxKaaOf7PUPvD_dvy6dk9fr4vLxbJVqktE-yBZRlUQgpQSlumKLCqJICCMWUkBkHRYEsTMoLKTJJCNU8E5IRYwk3hvIZutz5dsF_Djb2-doPoR0jc8VSteBpykfoagfp4GMMtsy7UDsIm5ySfNtqfmh1hC_2jkPhrPlFfzocgesdEMdXW9lwiPzH7gspRYKu</recordid><startdate>20110412</startdate><enddate>20110412</enddate><creator>Norris, Scott A.</creator><creator>Samela, Juha</creator><creator>Bukonte, Laura</creator><creator>Backman, Marie</creator><creator>Djurabekova, Flyura</creator><creator>Nordlund, Kai</creator><creator>Madi, Charbel S.</creator><creator>Brenner, Michael P.</creator><creator>Aziz, Michael J.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope></search><sort><creationdate>20110412</creationdate><title>Molecular dynamics of single-particle impacts predicts phase diagrams for large scale pattern formation</title><author>Norris, Scott A. ; Samela, Juha ; Bukonte, Laura ; Backman, Marie ; Djurabekova, Flyura ; Nordlund, Kai ; Madi, Charbel S. ; Brenner, Michael P. ; Aziz, Michael J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-67affbb488a993d2914d9f1aa49294863a91a07d53b8468001c364820de03dd13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>639/301/119</topic><topic>639/638/563/981</topic><topic>Energy Transfer</topic><topic>Humanities and Social Sciences</topic><topic>Ions - chemistry</topic><topic>Models, Chemical</topic><topic>Molecular Dynamics Simulation</topic><topic>multidisciplinary</topic><topic>Nanostructures</topic><topic>Nuclear Reactors - instrumentation</topic><topic>Radiation, Ionizing</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Norris, Scott A.</creatorcontrib><creatorcontrib>Samela, Juha</creatorcontrib><creatorcontrib>Bukonte, Laura</creatorcontrib><creatorcontrib>Backman, Marie</creatorcontrib><creatorcontrib>Djurabekova, Flyura</creatorcontrib><creatorcontrib>Nordlund, Kai</creatorcontrib><creatorcontrib>Madi, Charbel S.</creatorcontrib><creatorcontrib>Brenner, Michael P.</creatorcontrib><creatorcontrib>Aziz, Michael J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Norris, Scott A.</au><au>Samela, Juha</au><au>Bukonte, Laura</au><au>Backman, Marie</au><au>Djurabekova, Flyura</au><au>Nordlund, Kai</au><au>Madi, Charbel S.</au><au>Brenner, Michael P.</au><au>Aziz, Michael J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular dynamics of single-particle impacts predicts phase diagrams for large scale pattern formation</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2011-04-12</date><risdate>2011</risdate><volume>2</volume><issue>1</issue><spage>276</spage><pages>276-</pages><artnum>276</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Energetic particle irradiation can cause surface ultra-smoothening, self-organized nanoscale pattern formation or degradation of the structural integrity of nuclear reactor components. A fundamental understanding of the mechanisms governing the selection among these outcomes has been elusive. Here we predict the mechanism governing the transition from pattern formation to flatness using only parameter-free molecular dynamics simulations of single-ion impacts as input into a multiscale analysis, obtaining good agreement with experiment. Our results overturn the paradigm attributing these phenomena to the removal of target atoms via sputter erosion: the mechanism dominating both stability and instability is the impact-induced redistribution of target atoms that are not sputtered away, with erosive effects being essentially irrelevant. We discuss the potential implications for the formation of a mysterious nanoscale topography, leading to surface degradation, of tungsten plasma-facing fusion reactor walls. Consideration of impact-induced redistribution processes may lead to a new design criterion for stability under irradiation.
Energetic particle irradiation can lead to surface smoothing, pattern formation or degradation of the structural integrity of nuclear reactor components. Here, molecular dynamics simulations are used to study the mechanisms that determine the transitions between these disparate processes.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>21505432</pmid><doi>10.1038/ncomms1280</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2011-04, Vol.2 (1), p.276, Article 276 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_proquest_journals_925973553 |
source | Springer Nature OA Free Journals |
subjects | 639/301/119 639/638/563/981 Energy Transfer Humanities and Social Sciences Ions - chemistry Models, Chemical Molecular Dynamics Simulation multidisciplinary Nanostructures Nuclear Reactors - instrumentation Radiation, Ionizing Science Science (multidisciplinary) Surface Properties |
title | Molecular dynamics of single-particle impacts predicts phase diagrams for large scale pattern formation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T02%3A34%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20dynamics%20of%20single-particle%20impacts%20predicts%20phase%20diagrams%20for%20large%20scale%20pattern%20formation&rft.jtitle=Nature%20communications&rft.au=Norris,%20Scott%20A.&rft.date=2011-04-12&rft.volume=2&rft.issue=1&rft.spage=276&rft.pages=276-&rft.artnum=276&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/ncomms1280&rft_dat=%3Cproquest_C6C%3E2600881881%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=925973553&rft_id=info:pmid/21505432&rfr_iscdi=true |